Cargando…
Celastrol attenuates arterial and valvular calcification via inhibiting BMP2/Smad1/5 signalling
Vascular calcification is an important risk factor for the mortality and morbidity in chronic kidney disease (CKD). Unfortunately, until now there is no certain medication targeting vascular calcification in CKD. In this study, we explored the inhibitory effect of celastrol on high calcium–induced v...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7686965/ https://www.ncbi.nlm.nih.gov/pubmed/32954678 http://dx.doi.org/10.1111/jcmm.15779 |
_version_ | 1783613433531334656 |
---|---|
author | Su, Zhongping Zong, Pengyu Chen, Ji Yang, Shuo Shen, Yihui Lu, Yan Yang, Chuanxi Kong, Xiangqing Sheng, Yanhui Sun, Wei |
author_facet | Su, Zhongping Zong, Pengyu Chen, Ji Yang, Shuo Shen, Yihui Lu, Yan Yang, Chuanxi Kong, Xiangqing Sheng, Yanhui Sun, Wei |
author_sort | Su, Zhongping |
collection | PubMed |
description | Vascular calcification is an important risk factor for the mortality and morbidity in chronic kidney disease (CKD). Unfortunately, until now there is no certain medication targeting vascular calcification in CKD. In this study, we explored the inhibitory effect of celastrol on high calcium–induced vascular calcification and the underlying molecular mechanisms. Cell proliferation assay showed that celastrol inhibited aortic valve interstitial cell (VIC) and vascular smooth muscle cell (VSMC) proliferation when its concentration was higher than 0.6 μmol/L. 0.8 μmol/L celastrol inhibited the expression of osteogenic genes and calcium deposition induced by high‐calcium medium in both AVICs and VSMCs. In mouse vascular calcification model induced by adenine combined with vitamin D, alizarin red and immunostaining showed that celastrol inhibited pro‐calcification gene expression and calcium deposition in aortic wall and aortic valve tissues. At the molecular level, celastrol inhibited the increase of BMP2, phosphorylated Smad1/5 (p‐Smad1/5) and non‐phosphorylated β‐catenin (n‐p‐β‐catenin) induced by high‐calcium medium both in vitro and in vivo. Also, BMP2 overexpression reversed the anti‐calcification effects of celastrol by recovering the decrease of p‐Smad1/5 and n‐p‐β‐catenin. Furthermore, celastrol prevented the up‐regulation of BMPRII and down‐regulation of Smad6 induced by high calcium, and this protectory effect can be abolished by BMP2 overexpression. In conclusion, our data for the first time demonstrate that celastrol attenuates high calcium–induced arterial and valvular calcification by inhibiting BMP2/Smad1/5 signalling, which may provide a novel therapeutic strategy for arterial and valvular calcification in patients with CKD. |
format | Online Article Text |
id | pubmed-7686965 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-76869652020-12-03 Celastrol attenuates arterial and valvular calcification via inhibiting BMP2/Smad1/5 signalling Su, Zhongping Zong, Pengyu Chen, Ji Yang, Shuo Shen, Yihui Lu, Yan Yang, Chuanxi Kong, Xiangqing Sheng, Yanhui Sun, Wei J Cell Mol Med Original Articles Vascular calcification is an important risk factor for the mortality and morbidity in chronic kidney disease (CKD). Unfortunately, until now there is no certain medication targeting vascular calcification in CKD. In this study, we explored the inhibitory effect of celastrol on high calcium–induced vascular calcification and the underlying molecular mechanisms. Cell proliferation assay showed that celastrol inhibited aortic valve interstitial cell (VIC) and vascular smooth muscle cell (VSMC) proliferation when its concentration was higher than 0.6 μmol/L. 0.8 μmol/L celastrol inhibited the expression of osteogenic genes and calcium deposition induced by high‐calcium medium in both AVICs and VSMCs. In mouse vascular calcification model induced by adenine combined with vitamin D, alizarin red and immunostaining showed that celastrol inhibited pro‐calcification gene expression and calcium deposition in aortic wall and aortic valve tissues. At the molecular level, celastrol inhibited the increase of BMP2, phosphorylated Smad1/5 (p‐Smad1/5) and non‐phosphorylated β‐catenin (n‐p‐β‐catenin) induced by high‐calcium medium both in vitro and in vivo. Also, BMP2 overexpression reversed the anti‐calcification effects of celastrol by recovering the decrease of p‐Smad1/5 and n‐p‐β‐catenin. Furthermore, celastrol prevented the up‐regulation of BMPRII and down‐regulation of Smad6 induced by high calcium, and this protectory effect can be abolished by BMP2 overexpression. In conclusion, our data for the first time demonstrate that celastrol attenuates high calcium–induced arterial and valvular calcification by inhibiting BMP2/Smad1/5 signalling, which may provide a novel therapeutic strategy for arterial and valvular calcification in patients with CKD. John Wiley and Sons Inc. 2020-09-20 2020-11 /pmc/articles/PMC7686965/ /pubmed/32954678 http://dx.doi.org/10.1111/jcmm.15779 Text en © 2020 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Su, Zhongping Zong, Pengyu Chen, Ji Yang, Shuo Shen, Yihui Lu, Yan Yang, Chuanxi Kong, Xiangqing Sheng, Yanhui Sun, Wei Celastrol attenuates arterial and valvular calcification via inhibiting BMP2/Smad1/5 signalling |
title | Celastrol attenuates arterial and valvular calcification via inhibiting BMP2/Smad1/5 signalling |
title_full | Celastrol attenuates arterial and valvular calcification via inhibiting BMP2/Smad1/5 signalling |
title_fullStr | Celastrol attenuates arterial and valvular calcification via inhibiting BMP2/Smad1/5 signalling |
title_full_unstemmed | Celastrol attenuates arterial and valvular calcification via inhibiting BMP2/Smad1/5 signalling |
title_short | Celastrol attenuates arterial and valvular calcification via inhibiting BMP2/Smad1/5 signalling |
title_sort | celastrol attenuates arterial and valvular calcification via inhibiting bmp2/smad1/5 signalling |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7686965/ https://www.ncbi.nlm.nih.gov/pubmed/32954678 http://dx.doi.org/10.1111/jcmm.15779 |
work_keys_str_mv | AT suzhongping celastrolattenuatesarterialandvalvularcalcificationviainhibitingbmp2smad15signalling AT zongpengyu celastrolattenuatesarterialandvalvularcalcificationviainhibitingbmp2smad15signalling AT chenji celastrolattenuatesarterialandvalvularcalcificationviainhibitingbmp2smad15signalling AT yangshuo celastrolattenuatesarterialandvalvularcalcificationviainhibitingbmp2smad15signalling AT shenyihui celastrolattenuatesarterialandvalvularcalcificationviainhibitingbmp2smad15signalling AT luyan celastrolattenuatesarterialandvalvularcalcificationviainhibitingbmp2smad15signalling AT yangchuanxi celastrolattenuatesarterialandvalvularcalcificationviainhibitingbmp2smad15signalling AT kongxiangqing celastrolattenuatesarterialandvalvularcalcificationviainhibitingbmp2smad15signalling AT shengyanhui celastrolattenuatesarterialandvalvularcalcificationviainhibitingbmp2smad15signalling AT sunwei celastrolattenuatesarterialandvalvularcalcificationviainhibitingbmp2smad15signalling |