Cargando…
Automated classification of cancer from fine needle aspiration cytological image use neural networks: A meta‐analysis
BACKGROUND: The role of retrospective analysis has been evolved greatly in cancer research. We undertook this meta‐analysis to evaluate the diagnostic value of Neural networks (NNs) in Fine needle aspiration cytological (FNAC) image of cancer. METHODS: We systematically retrieved 396 literatures on...
Autores principales: | Huang, Jian, Wang, Dongcun, Da, Jiping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7687103/ https://www.ncbi.nlm.nih.gov/pubmed/32530573 http://dx.doi.org/10.1002/dc.24520 |
Ejemplares similares
-
Fine-needle aspiration cytology of gallbladder with an attempt of cytomorphological classification
por: Chandra, Smita, et al.
Publicado: (2019) -
Fine needle aspiration cytology in fibromatosis
por: Tanwar, Pranay, et al.
Publicado: (2012) -
Fine needle aspiration cytology of pilomatrixoma
por: Bansal, Cherry, et al.
Publicado: (2011) -
Image-guided Fine Needle Aspiration Cytology of Intrathoracic Lesions
por: Abraham, Annie E., et al.
Publicado: (2019) -
Fine needle aspiration cytology of gastric carcinoma.
por: Allen, D. C., et al.
Publicado: (1997)