Cargando…

Quantitative aerobiologic analysis of an influenza human challenge‐transmission trial

Despite evidence that airborne transmission contributes to influenza epidemics, limited knowledge of the infectiousness of human influenza cases hinders pandemic preparedness. We used airborne viral source strength and indoor CO(2) monitoring from the largest human influenza challenge‐transmission t...

Descripción completa

Detalles Bibliográficos
Autores principales: Bueno de Mesquita, Paul Jacob, Noakes, Catherine J., Milton, Donald K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7687273/
https://www.ncbi.nlm.nih.gov/pubmed/32542890
http://dx.doi.org/10.1111/ina.12701
_version_ 1783613496116641792
author Bueno de Mesquita, Paul Jacob
Noakes, Catherine J.
Milton, Donald K.
author_facet Bueno de Mesquita, Paul Jacob
Noakes, Catherine J.
Milton, Donald K.
author_sort Bueno de Mesquita, Paul Jacob
collection PubMed
description Despite evidence that airborne transmission contributes to influenza epidemics, limited knowledge of the infectiousness of human influenza cases hinders pandemic preparedness. We used airborne viral source strength and indoor CO(2) monitoring from the largest human influenza challenge‐transmission trial (EMIT: Evaluating Modes of Influenza Transmission, ClinicalTrials.gov number NCT01710111) to compute an airborne infectious dose generation rate q = 0.11 (95% CI 0.088, 0.12)/h and calculate the quantity of airborne virus per infectious dose σ = 1.4E + 5 RNA copies/quantum (95% CI 9.9E + 4, 1.8E + 5). We then compared these calculated values to available data on influenza airborne infectious dose from several previous studies, and applied the values to dormitory room environments to predict probability of transmission between roommates. Transmission risk from typical, moderately to severely symptomatic influenza cases is dramatically decreased by exposure reduction via increasing indoor air ventilation. The minority of cases who shed the most virus (ie, supershedders) may pose great risk even in well‐ventilated spaces. Our modeling method and estimated infectiousness provide a ground work for (a) epidemiologic studies of transmission in non‐experimental settings and (b) evaluation of the extent to which airborne exposure control strategies could limit transmission risk.
format Online
Article
Text
id pubmed-7687273
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-76872732020-12-05 Quantitative aerobiologic analysis of an influenza human challenge‐transmission trial Bueno de Mesquita, Paul Jacob Noakes, Catherine J. Milton, Donald K. Indoor Air Original Articles Despite evidence that airborne transmission contributes to influenza epidemics, limited knowledge of the infectiousness of human influenza cases hinders pandemic preparedness. We used airborne viral source strength and indoor CO(2) monitoring from the largest human influenza challenge‐transmission trial (EMIT: Evaluating Modes of Influenza Transmission, ClinicalTrials.gov number NCT01710111) to compute an airborne infectious dose generation rate q = 0.11 (95% CI 0.088, 0.12)/h and calculate the quantity of airborne virus per infectious dose σ = 1.4E + 5 RNA copies/quantum (95% CI 9.9E + 4, 1.8E + 5). We then compared these calculated values to available data on influenza airborne infectious dose from several previous studies, and applied the values to dormitory room environments to predict probability of transmission between roommates. Transmission risk from typical, moderately to severely symptomatic influenza cases is dramatically decreased by exposure reduction via increasing indoor air ventilation. The minority of cases who shed the most virus (ie, supershedders) may pose great risk even in well‐ventilated spaces. Our modeling method and estimated infectiousness provide a ground work for (a) epidemiologic studies of transmission in non‐experimental settings and (b) evaluation of the extent to which airborne exposure control strategies could limit transmission risk. John Wiley and Sons Inc. 2020-06-15 2020-11 /pmc/articles/PMC7687273/ /pubmed/32542890 http://dx.doi.org/10.1111/ina.12701 Text en © 2020 The Authors. Indoor Air published by John Wiley & Sons Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Bueno de Mesquita, Paul Jacob
Noakes, Catherine J.
Milton, Donald K.
Quantitative aerobiologic analysis of an influenza human challenge‐transmission trial
title Quantitative aerobiologic analysis of an influenza human challenge‐transmission trial
title_full Quantitative aerobiologic analysis of an influenza human challenge‐transmission trial
title_fullStr Quantitative aerobiologic analysis of an influenza human challenge‐transmission trial
title_full_unstemmed Quantitative aerobiologic analysis of an influenza human challenge‐transmission trial
title_short Quantitative aerobiologic analysis of an influenza human challenge‐transmission trial
title_sort quantitative aerobiologic analysis of an influenza human challenge‐transmission trial
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7687273/
https://www.ncbi.nlm.nih.gov/pubmed/32542890
http://dx.doi.org/10.1111/ina.12701
work_keys_str_mv AT buenodemesquitapauljacob quantitativeaerobiologicanalysisofaninfluenzahumanchallengetransmissiontrial
AT noakescatherinej quantitativeaerobiologicanalysisofaninfluenzahumanchallengetransmissiontrial
AT miltondonaldk quantitativeaerobiologicanalysisofaninfluenzahumanchallengetransmissiontrial