Cargando…
Novel spatiotemporal feature extraction parallel deep neural network for forecasting confirmed cases of coronavirus disease 2019
The coronavirus disease 2019 pandemic continues as of March 26 and spread to Europe on approximately February 24. A report from April 29 revealed 1.26 million confirmed cases and 125 928 deaths in Europe. To refer government and enterprise to arrange countermeasures. The paper proposes a novel deep...
Autores principales: | Huang, Chiou-Jye, Shen, Yamin, Kuo, Ping-Huan, Chen, Yung-Hsiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7687416/ https://www.ncbi.nlm.nih.gov/pubmed/33250530 http://dx.doi.org/10.1016/j.seps.2020.100976 |
Ejemplares similares
-
A Deep CNN-LSTM Model for Particulate Matter (PM(2.5)) Forecasting in Smart Cities
por: Huang, Chiou-Jye, et al.
Publicado: (2018) -
Stock Market Forecasting Based on Spatiotemporal Deep Learning
por: Li, Yung-Chen, et al.
Publicado: (2023) -
Deep Spatiotemporal Model for COVID-19 Forecasting
por: Muñoz-Organero, Mario, et al.
Publicado: (2022) -
Spatiotemporal Transformer Neural Network for Time-Series Forecasting
por: You, Yujie, et al.
Publicado: (2022) -
Spatiotemporal neural network with attention mechanism for El Niño forecasts
por: Kim, Jinah, et al.
Publicado: (2022)