Cargando…
Up-regulation of VANGL1 by IGF2BPs and miR-29b-3p attenuates the detrimental effect of irradiation on lung adenocarcinoma
Accumulating evidence suggests that radiation treatment causes an adaptive response of lung adenocarcinoma (LUAD), which in turn attenuates the lethal effect of the irradiation. Previous microarray assays manifested the change of gene expression profile after irradiation. Bioinformatics analysis of...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7687693/ https://www.ncbi.nlm.nih.gov/pubmed/33228740 http://dx.doi.org/10.1186/s13046-020-01772-y |
_version_ | 1783613577192538112 |
---|---|
author | Hao, Chun-cheng Xu, Cui-yang Zhao, Xin-yu Luo, Jia-ning Wang, Gang Zhao, Li-hong Ge, Xiaofeng Ge, Xiao-feng |
author_facet | Hao, Chun-cheng Xu, Cui-yang Zhao, Xin-yu Luo, Jia-ning Wang, Gang Zhao, Li-hong Ge, Xiaofeng Ge, Xiao-feng |
author_sort | Hao, Chun-cheng |
collection | PubMed |
description | Accumulating evidence suggests that radiation treatment causes an adaptive response of lung adenocarcinoma (LUAD), which in turn attenuates the lethal effect of the irradiation. Previous microarray assays manifested the change of gene expression profile after irradiation. Bioinformatics analysis of the significantly changed genes revealed that VANGL1 may notably influence the effect of radiation on LUAD. To determine the role of VANGL1, this study knocked down or overexpressed VANGL1 in LUAD. M6A level of VANGL1 mRNA was determined by M6A-IP-qPCR assay. Irradiation caused the up-regulation of VANGL1 with the increase of VANGL1 m6A level. Depletion of m6A readers, IGF2BP2/3, undermined VANGL1 mRNA stability and expression upon irradiation. miR-29b-3p expression was decreased by irradiation, however VANGL1 is a target of miR-29b-3p which was identified by Luciferase report assay. The reduction of miR-29b-3p inhibited the degradation of VANGL1 mRNA. Knockdown of VANGL1 enhanced the detrimental effect of irradiation on LUAD, as indicated by more severe DNA damage and increased percentage of apoptotic cells. Immunocoprecipitation revealed the interaction between VANGL1 with BRAF. VANGL1 increased BRAF probably through suppressing the protein degradation, which led to the increase of BRAF downstream effectors, TP53BP1 and RAD51. These effectors are involved in DNA repair after the damage. In summary, irradiation caused the up-regulation of VANGL1, which, in turn, mitigated the detrimental effect of irradiation on LUAD by protecting DNA from damage probably through activating BRAF/TP53BP1/RAD51 cascades. Increased m6A level of VANGL1 and reduced miR-29b-3p took the responsibility of VANGL1 overexpression upon irradiation. |
format | Online Article Text |
id | pubmed-7687693 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-76876932020-11-30 Up-regulation of VANGL1 by IGF2BPs and miR-29b-3p attenuates the detrimental effect of irradiation on lung adenocarcinoma Hao, Chun-cheng Xu, Cui-yang Zhao, Xin-yu Luo, Jia-ning Wang, Gang Zhao, Li-hong Ge, Xiaofeng Ge, Xiao-feng J Exp Clin Cancer Res Research Accumulating evidence suggests that radiation treatment causes an adaptive response of lung adenocarcinoma (LUAD), which in turn attenuates the lethal effect of the irradiation. Previous microarray assays manifested the change of gene expression profile after irradiation. Bioinformatics analysis of the significantly changed genes revealed that VANGL1 may notably influence the effect of radiation on LUAD. To determine the role of VANGL1, this study knocked down or overexpressed VANGL1 in LUAD. M6A level of VANGL1 mRNA was determined by M6A-IP-qPCR assay. Irradiation caused the up-regulation of VANGL1 with the increase of VANGL1 m6A level. Depletion of m6A readers, IGF2BP2/3, undermined VANGL1 mRNA stability and expression upon irradiation. miR-29b-3p expression was decreased by irradiation, however VANGL1 is a target of miR-29b-3p which was identified by Luciferase report assay. The reduction of miR-29b-3p inhibited the degradation of VANGL1 mRNA. Knockdown of VANGL1 enhanced the detrimental effect of irradiation on LUAD, as indicated by more severe DNA damage and increased percentage of apoptotic cells. Immunocoprecipitation revealed the interaction between VANGL1 with BRAF. VANGL1 increased BRAF probably through suppressing the protein degradation, which led to the increase of BRAF downstream effectors, TP53BP1 and RAD51. These effectors are involved in DNA repair after the damage. In summary, irradiation caused the up-regulation of VANGL1, which, in turn, mitigated the detrimental effect of irradiation on LUAD by protecting DNA from damage probably through activating BRAF/TP53BP1/RAD51 cascades. Increased m6A level of VANGL1 and reduced miR-29b-3p took the responsibility of VANGL1 overexpression upon irradiation. BioMed Central 2020-11-23 /pmc/articles/PMC7687693/ /pubmed/33228740 http://dx.doi.org/10.1186/s13046-020-01772-y Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Hao, Chun-cheng Xu, Cui-yang Zhao, Xin-yu Luo, Jia-ning Wang, Gang Zhao, Li-hong Ge, Xiaofeng Ge, Xiao-feng Up-regulation of VANGL1 by IGF2BPs and miR-29b-3p attenuates the detrimental effect of irradiation on lung adenocarcinoma |
title | Up-regulation of VANGL1 by IGF2BPs and miR-29b-3p attenuates the detrimental effect of irradiation on lung adenocarcinoma |
title_full | Up-regulation of VANGL1 by IGF2BPs and miR-29b-3p attenuates the detrimental effect of irradiation on lung adenocarcinoma |
title_fullStr | Up-regulation of VANGL1 by IGF2BPs and miR-29b-3p attenuates the detrimental effect of irradiation on lung adenocarcinoma |
title_full_unstemmed | Up-regulation of VANGL1 by IGF2BPs and miR-29b-3p attenuates the detrimental effect of irradiation on lung adenocarcinoma |
title_short | Up-regulation of VANGL1 by IGF2BPs and miR-29b-3p attenuates the detrimental effect of irradiation on lung adenocarcinoma |
title_sort | up-regulation of vangl1 by igf2bps and mir-29b-3p attenuates the detrimental effect of irradiation on lung adenocarcinoma |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7687693/ https://www.ncbi.nlm.nih.gov/pubmed/33228740 http://dx.doi.org/10.1186/s13046-020-01772-y |
work_keys_str_mv | AT haochuncheng upregulationofvangl1byigf2bpsandmir29b3pattenuatesthedetrimentaleffectofirradiationonlungadenocarcinoma AT xucuiyang upregulationofvangl1byigf2bpsandmir29b3pattenuatesthedetrimentaleffectofirradiationonlungadenocarcinoma AT zhaoxinyu upregulationofvangl1byigf2bpsandmir29b3pattenuatesthedetrimentaleffectofirradiationonlungadenocarcinoma AT luojianing upregulationofvangl1byigf2bpsandmir29b3pattenuatesthedetrimentaleffectofirradiationonlungadenocarcinoma AT wanggang upregulationofvangl1byigf2bpsandmir29b3pattenuatesthedetrimentaleffectofirradiationonlungadenocarcinoma AT zhaolihong upregulationofvangl1byigf2bpsandmir29b3pattenuatesthedetrimentaleffectofirradiationonlungadenocarcinoma AT gexiaofeng upregulationofvangl1byigf2bpsandmir29b3pattenuatesthedetrimentaleffectofirradiationonlungadenocarcinoma AT gexiaofeng upregulationofvangl1byigf2bpsandmir29b3pattenuatesthedetrimentaleffectofirradiationonlungadenocarcinoma |