Cargando…

Imbalanced cellular metabolism compromises cartilage homeostasis and joint function in a mouse model of mucolipidosis type III gamma

Mucolipidosis type III (MLIII) gamma is a rare inherited lysosomal storage disorder caused by mutations in GNPTG encoding the γ-subunit of GlcNAc-1-phosphotransferase, the key enzyme ensuring proper intracellular location of multiple lysosomal enzymes. Patients with MLIII gamma typically present wit...

Descripción completa

Detalles Bibliográficos
Autores principales: Westermann, Lena Marie, Fleischhauer, Lutz, Vogel, Jonas, Jenei-Lanzl, Zsuzsa, Ludwig, Nataniel Floriano, Schau, Lynn, Morellini, Fabio, Baranowsky, Anke, Yorgan, Timur A., Di Lorenzo, Giorgia, Schweizer, Michaela, de Souza Pinheiro, Bruna, Guarany, Nicole Ruas, Sperb-Ludwig, Fernanda, Visioli, Fernanda, Oliveira Silva, Thiago, Soul, Jamie, Hendrickx, Gretl, Wiegert, J. Simon, Schwartz, Ida V. D., Clausen-Schaumann, Hauke, Zaucke, Frank, Schinke, Thorsten, Pohl, Sandra, Danyukova, Tatyana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7687858/
https://www.ncbi.nlm.nih.gov/pubmed/33023972
http://dx.doi.org/10.1242/dmm.046425
_version_ 1783613608271282176
author Westermann, Lena Marie
Fleischhauer, Lutz
Vogel, Jonas
Jenei-Lanzl, Zsuzsa
Ludwig, Nataniel Floriano
Schau, Lynn
Morellini, Fabio
Baranowsky, Anke
Yorgan, Timur A.
Di Lorenzo, Giorgia
Schweizer, Michaela
de Souza Pinheiro, Bruna
Guarany, Nicole Ruas
Sperb-Ludwig, Fernanda
Visioli, Fernanda
Oliveira Silva, Thiago
Soul, Jamie
Hendrickx, Gretl
Wiegert, J. Simon
Schwartz, Ida V. D.
Clausen-Schaumann, Hauke
Zaucke, Frank
Schinke, Thorsten
Pohl, Sandra
Danyukova, Tatyana
author_facet Westermann, Lena Marie
Fleischhauer, Lutz
Vogel, Jonas
Jenei-Lanzl, Zsuzsa
Ludwig, Nataniel Floriano
Schau, Lynn
Morellini, Fabio
Baranowsky, Anke
Yorgan, Timur A.
Di Lorenzo, Giorgia
Schweizer, Michaela
de Souza Pinheiro, Bruna
Guarany, Nicole Ruas
Sperb-Ludwig, Fernanda
Visioli, Fernanda
Oliveira Silva, Thiago
Soul, Jamie
Hendrickx, Gretl
Wiegert, J. Simon
Schwartz, Ida V. D.
Clausen-Schaumann, Hauke
Zaucke, Frank
Schinke, Thorsten
Pohl, Sandra
Danyukova, Tatyana
author_sort Westermann, Lena Marie
collection PubMed
description Mucolipidosis type III (MLIII) gamma is a rare inherited lysosomal storage disorder caused by mutations in GNPTG encoding the γ-subunit of GlcNAc-1-phosphotransferase, the key enzyme ensuring proper intracellular location of multiple lysosomal enzymes. Patients with MLIII gamma typically present with osteoarthritis and joint stiffness, suggesting cartilage involvement. Using Gnptg knockout (Gnptg(ko)) mice as a model of the human disease, we showed that missorting of a number of lysosomal enzymes is associated with intracellular accumulation of chondroitin sulfate in Gnptg(ko) chondrocytes and their impaired differentiation, as well as with altered microstructure of the cartilage extracellular matrix (ECM). We also demonstrated distinct functional and structural properties of the Achilles tendons isolated from Gnptg(ko) and Gnptab knock-in (Gnptab(ki)) mice, the latter displaying a more severe phenotype resembling mucolipidosis type II (MLII) in humans. Together with comparative analyses of joint mobility in MLII and MLIII patients, these findings provide a basis for better understanding of the molecular reasons leading to joint pathology in these patients. Our data suggest that lack of GlcNAc-1-phosphotransferase activity due to defects in the γ-subunit causes structural changes within the ECM of connective and mechanosensitive tissues, such as cartilage and tendon, and eventually results in functional joint abnormalities typically observed in MLIII gamma patients. This idea was supported by a deficit of the limb motor function in Gnptg(ko) mice challenged on a rotarod under fatigue-associated conditions, suggesting that the impaired motor performance of Gnptg(ko) mice was caused by fatigue and/or pain at the joint. This article has an associated First Person interview with the first author of the paper.
format Online
Article
Text
id pubmed-7687858
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Company of Biologists Ltd
record_format MEDLINE/PubMed
spelling pubmed-76878582020-11-27 Imbalanced cellular metabolism compromises cartilage homeostasis and joint function in a mouse model of mucolipidosis type III gamma Westermann, Lena Marie Fleischhauer, Lutz Vogel, Jonas Jenei-Lanzl, Zsuzsa Ludwig, Nataniel Floriano Schau, Lynn Morellini, Fabio Baranowsky, Anke Yorgan, Timur A. Di Lorenzo, Giorgia Schweizer, Michaela de Souza Pinheiro, Bruna Guarany, Nicole Ruas Sperb-Ludwig, Fernanda Visioli, Fernanda Oliveira Silva, Thiago Soul, Jamie Hendrickx, Gretl Wiegert, J. Simon Schwartz, Ida V. D. Clausen-Schaumann, Hauke Zaucke, Frank Schinke, Thorsten Pohl, Sandra Danyukova, Tatyana Dis Model Mech Research Article Mucolipidosis type III (MLIII) gamma is a rare inherited lysosomal storage disorder caused by mutations in GNPTG encoding the γ-subunit of GlcNAc-1-phosphotransferase, the key enzyme ensuring proper intracellular location of multiple lysosomal enzymes. Patients with MLIII gamma typically present with osteoarthritis and joint stiffness, suggesting cartilage involvement. Using Gnptg knockout (Gnptg(ko)) mice as a model of the human disease, we showed that missorting of a number of lysosomal enzymes is associated with intracellular accumulation of chondroitin sulfate in Gnptg(ko) chondrocytes and their impaired differentiation, as well as with altered microstructure of the cartilage extracellular matrix (ECM). We also demonstrated distinct functional and structural properties of the Achilles tendons isolated from Gnptg(ko) and Gnptab knock-in (Gnptab(ki)) mice, the latter displaying a more severe phenotype resembling mucolipidosis type II (MLII) in humans. Together with comparative analyses of joint mobility in MLII and MLIII patients, these findings provide a basis for better understanding of the molecular reasons leading to joint pathology in these patients. Our data suggest that lack of GlcNAc-1-phosphotransferase activity due to defects in the γ-subunit causes structural changes within the ECM of connective and mechanosensitive tissues, such as cartilage and tendon, and eventually results in functional joint abnormalities typically observed in MLIII gamma patients. This idea was supported by a deficit of the limb motor function in Gnptg(ko) mice challenged on a rotarod under fatigue-associated conditions, suggesting that the impaired motor performance of Gnptg(ko) mice was caused by fatigue and/or pain at the joint. This article has an associated First Person interview with the first author of the paper. The Company of Biologists Ltd 2020-11-18 /pmc/articles/PMC7687858/ /pubmed/33023972 http://dx.doi.org/10.1242/dmm.046425 Text en © 2020. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by/4.0This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.
spellingShingle Research Article
Westermann, Lena Marie
Fleischhauer, Lutz
Vogel, Jonas
Jenei-Lanzl, Zsuzsa
Ludwig, Nataniel Floriano
Schau, Lynn
Morellini, Fabio
Baranowsky, Anke
Yorgan, Timur A.
Di Lorenzo, Giorgia
Schweizer, Michaela
de Souza Pinheiro, Bruna
Guarany, Nicole Ruas
Sperb-Ludwig, Fernanda
Visioli, Fernanda
Oliveira Silva, Thiago
Soul, Jamie
Hendrickx, Gretl
Wiegert, J. Simon
Schwartz, Ida V. D.
Clausen-Schaumann, Hauke
Zaucke, Frank
Schinke, Thorsten
Pohl, Sandra
Danyukova, Tatyana
Imbalanced cellular metabolism compromises cartilage homeostasis and joint function in a mouse model of mucolipidosis type III gamma
title Imbalanced cellular metabolism compromises cartilage homeostasis and joint function in a mouse model of mucolipidosis type III gamma
title_full Imbalanced cellular metabolism compromises cartilage homeostasis and joint function in a mouse model of mucolipidosis type III gamma
title_fullStr Imbalanced cellular metabolism compromises cartilage homeostasis and joint function in a mouse model of mucolipidosis type III gamma
title_full_unstemmed Imbalanced cellular metabolism compromises cartilage homeostasis and joint function in a mouse model of mucolipidosis type III gamma
title_short Imbalanced cellular metabolism compromises cartilage homeostasis and joint function in a mouse model of mucolipidosis type III gamma
title_sort imbalanced cellular metabolism compromises cartilage homeostasis and joint function in a mouse model of mucolipidosis type iii gamma
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7687858/
https://www.ncbi.nlm.nih.gov/pubmed/33023972
http://dx.doi.org/10.1242/dmm.046425
work_keys_str_mv AT westermannlenamarie imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma
AT fleischhauerlutz imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma
AT vogeljonas imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma
AT jeneilanzlzsuzsa imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma
AT ludwignatanielfloriano imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma
AT schaulynn imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma
AT morellinifabio imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma
AT baranowskyanke imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma
AT yorgantimura imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma
AT dilorenzogiorgia imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma
AT schweizermichaela imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma
AT desouzapinheirobruna imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma
AT guaranynicoleruas imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma
AT sperbludwigfernanda imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma
AT visiolifernanda imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma
AT oliveirasilvathiago imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma
AT souljamie imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma
AT hendrickxgretl imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma
AT wiegertjsimon imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma
AT schwartzidavd imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma
AT clausenschaumannhauke imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma
AT zauckefrank imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma
AT schinkethorsten imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma
AT pohlsandra imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma
AT danyukovatatyana imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma