Cargando…
Imbalanced cellular metabolism compromises cartilage homeostasis and joint function in a mouse model of mucolipidosis type III gamma
Mucolipidosis type III (MLIII) gamma is a rare inherited lysosomal storage disorder caused by mutations in GNPTG encoding the γ-subunit of GlcNAc-1-phosphotransferase, the key enzyme ensuring proper intracellular location of multiple lysosomal enzymes. Patients with MLIII gamma typically present wit...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7687858/ https://www.ncbi.nlm.nih.gov/pubmed/33023972 http://dx.doi.org/10.1242/dmm.046425 |
_version_ | 1783613608271282176 |
---|---|
author | Westermann, Lena Marie Fleischhauer, Lutz Vogel, Jonas Jenei-Lanzl, Zsuzsa Ludwig, Nataniel Floriano Schau, Lynn Morellini, Fabio Baranowsky, Anke Yorgan, Timur A. Di Lorenzo, Giorgia Schweizer, Michaela de Souza Pinheiro, Bruna Guarany, Nicole Ruas Sperb-Ludwig, Fernanda Visioli, Fernanda Oliveira Silva, Thiago Soul, Jamie Hendrickx, Gretl Wiegert, J. Simon Schwartz, Ida V. D. Clausen-Schaumann, Hauke Zaucke, Frank Schinke, Thorsten Pohl, Sandra Danyukova, Tatyana |
author_facet | Westermann, Lena Marie Fleischhauer, Lutz Vogel, Jonas Jenei-Lanzl, Zsuzsa Ludwig, Nataniel Floriano Schau, Lynn Morellini, Fabio Baranowsky, Anke Yorgan, Timur A. Di Lorenzo, Giorgia Schweizer, Michaela de Souza Pinheiro, Bruna Guarany, Nicole Ruas Sperb-Ludwig, Fernanda Visioli, Fernanda Oliveira Silva, Thiago Soul, Jamie Hendrickx, Gretl Wiegert, J. Simon Schwartz, Ida V. D. Clausen-Schaumann, Hauke Zaucke, Frank Schinke, Thorsten Pohl, Sandra Danyukova, Tatyana |
author_sort | Westermann, Lena Marie |
collection | PubMed |
description | Mucolipidosis type III (MLIII) gamma is a rare inherited lysosomal storage disorder caused by mutations in GNPTG encoding the γ-subunit of GlcNAc-1-phosphotransferase, the key enzyme ensuring proper intracellular location of multiple lysosomal enzymes. Patients with MLIII gamma typically present with osteoarthritis and joint stiffness, suggesting cartilage involvement. Using Gnptg knockout (Gnptg(ko)) mice as a model of the human disease, we showed that missorting of a number of lysosomal enzymes is associated with intracellular accumulation of chondroitin sulfate in Gnptg(ko) chondrocytes and their impaired differentiation, as well as with altered microstructure of the cartilage extracellular matrix (ECM). We also demonstrated distinct functional and structural properties of the Achilles tendons isolated from Gnptg(ko) and Gnptab knock-in (Gnptab(ki)) mice, the latter displaying a more severe phenotype resembling mucolipidosis type II (MLII) in humans. Together with comparative analyses of joint mobility in MLII and MLIII patients, these findings provide a basis for better understanding of the molecular reasons leading to joint pathology in these patients. Our data suggest that lack of GlcNAc-1-phosphotransferase activity due to defects in the γ-subunit causes structural changes within the ECM of connective and mechanosensitive tissues, such as cartilage and tendon, and eventually results in functional joint abnormalities typically observed in MLIII gamma patients. This idea was supported by a deficit of the limb motor function in Gnptg(ko) mice challenged on a rotarod under fatigue-associated conditions, suggesting that the impaired motor performance of Gnptg(ko) mice was caused by fatigue and/or pain at the joint. This article has an associated First Person interview with the first author of the paper. |
format | Online Article Text |
id | pubmed-7687858 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Company of Biologists Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-76878582020-11-27 Imbalanced cellular metabolism compromises cartilage homeostasis and joint function in a mouse model of mucolipidosis type III gamma Westermann, Lena Marie Fleischhauer, Lutz Vogel, Jonas Jenei-Lanzl, Zsuzsa Ludwig, Nataniel Floriano Schau, Lynn Morellini, Fabio Baranowsky, Anke Yorgan, Timur A. Di Lorenzo, Giorgia Schweizer, Michaela de Souza Pinheiro, Bruna Guarany, Nicole Ruas Sperb-Ludwig, Fernanda Visioli, Fernanda Oliveira Silva, Thiago Soul, Jamie Hendrickx, Gretl Wiegert, J. Simon Schwartz, Ida V. D. Clausen-Schaumann, Hauke Zaucke, Frank Schinke, Thorsten Pohl, Sandra Danyukova, Tatyana Dis Model Mech Research Article Mucolipidosis type III (MLIII) gamma is a rare inherited lysosomal storage disorder caused by mutations in GNPTG encoding the γ-subunit of GlcNAc-1-phosphotransferase, the key enzyme ensuring proper intracellular location of multiple lysosomal enzymes. Patients with MLIII gamma typically present with osteoarthritis and joint stiffness, suggesting cartilage involvement. Using Gnptg knockout (Gnptg(ko)) mice as a model of the human disease, we showed that missorting of a number of lysosomal enzymes is associated with intracellular accumulation of chondroitin sulfate in Gnptg(ko) chondrocytes and their impaired differentiation, as well as with altered microstructure of the cartilage extracellular matrix (ECM). We also demonstrated distinct functional and structural properties of the Achilles tendons isolated from Gnptg(ko) and Gnptab knock-in (Gnptab(ki)) mice, the latter displaying a more severe phenotype resembling mucolipidosis type II (MLII) in humans. Together with comparative analyses of joint mobility in MLII and MLIII patients, these findings provide a basis for better understanding of the molecular reasons leading to joint pathology in these patients. Our data suggest that lack of GlcNAc-1-phosphotransferase activity due to defects in the γ-subunit causes structural changes within the ECM of connective and mechanosensitive tissues, such as cartilage and tendon, and eventually results in functional joint abnormalities typically observed in MLIII gamma patients. This idea was supported by a deficit of the limb motor function in Gnptg(ko) mice challenged on a rotarod under fatigue-associated conditions, suggesting that the impaired motor performance of Gnptg(ko) mice was caused by fatigue and/or pain at the joint. This article has an associated First Person interview with the first author of the paper. The Company of Biologists Ltd 2020-11-18 /pmc/articles/PMC7687858/ /pubmed/33023972 http://dx.doi.org/10.1242/dmm.046425 Text en © 2020. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by/4.0This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Research Article Westermann, Lena Marie Fleischhauer, Lutz Vogel, Jonas Jenei-Lanzl, Zsuzsa Ludwig, Nataniel Floriano Schau, Lynn Morellini, Fabio Baranowsky, Anke Yorgan, Timur A. Di Lorenzo, Giorgia Schweizer, Michaela de Souza Pinheiro, Bruna Guarany, Nicole Ruas Sperb-Ludwig, Fernanda Visioli, Fernanda Oliveira Silva, Thiago Soul, Jamie Hendrickx, Gretl Wiegert, J. Simon Schwartz, Ida V. D. Clausen-Schaumann, Hauke Zaucke, Frank Schinke, Thorsten Pohl, Sandra Danyukova, Tatyana Imbalanced cellular metabolism compromises cartilage homeostasis and joint function in a mouse model of mucolipidosis type III gamma |
title | Imbalanced cellular metabolism compromises cartilage homeostasis and joint function in a mouse model of mucolipidosis type III gamma |
title_full | Imbalanced cellular metabolism compromises cartilage homeostasis and joint function in a mouse model of mucolipidosis type III gamma |
title_fullStr | Imbalanced cellular metabolism compromises cartilage homeostasis and joint function in a mouse model of mucolipidosis type III gamma |
title_full_unstemmed | Imbalanced cellular metabolism compromises cartilage homeostasis and joint function in a mouse model of mucolipidosis type III gamma |
title_short | Imbalanced cellular metabolism compromises cartilage homeostasis and joint function in a mouse model of mucolipidosis type III gamma |
title_sort | imbalanced cellular metabolism compromises cartilage homeostasis and joint function in a mouse model of mucolipidosis type iii gamma |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7687858/ https://www.ncbi.nlm.nih.gov/pubmed/33023972 http://dx.doi.org/10.1242/dmm.046425 |
work_keys_str_mv | AT westermannlenamarie imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma AT fleischhauerlutz imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma AT vogeljonas imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma AT jeneilanzlzsuzsa imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma AT ludwignatanielfloriano imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma AT schaulynn imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma AT morellinifabio imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma AT baranowskyanke imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma AT yorgantimura imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma AT dilorenzogiorgia imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma AT schweizermichaela imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma AT desouzapinheirobruna imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma AT guaranynicoleruas imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma AT sperbludwigfernanda imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma AT visiolifernanda imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma AT oliveirasilvathiago imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma AT souljamie imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma AT hendrickxgretl imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma AT wiegertjsimon imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma AT schwartzidavd imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma AT clausenschaumannhauke imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma AT zauckefrank imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma AT schinkethorsten imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma AT pohlsandra imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma AT danyukovatatyana imbalancedcellularmetabolismcompromisescartilagehomeostasisandjointfunctioninamousemodelofmucolipidosistypeiiigamma |