Cargando…

Autophagy-mediated metabolic effects of aspirin

Salicylate, the active derivative of aspirin (acetylsalicylate), recapitulates the mode of action of caloric restriction inasmuch as it stimulates autophagy through the inhibition of the acetyltransferase activity of EP300. Here, we directly compared the metabolic effects of aspirin medication with...

Descripción completa

Detalles Bibliográficos
Autores principales: Castoldi, Francesca, Humeau, Juliette, Martins, Isabelle, Lachkar, Sylvie, Loew, Damarys, Dingli, Florent, Durand, Sylvère, Enot, David, Bossut, Noëlie, Chery, Alexis, Aprahamian, Fanny, Demont, Yohann, Opolon, Paule, Signolle, Nicolas, Sauvat, Allan, Semeraro, Michaela, Bezu, Lucillia, Baracco, Elisa Elena, Vacchelli, Erika, Pol, Jonathan G., Lévesque, Sarah, Bloy, Norma, Sica, Valentina, Maiuri, Maria Chiara, Kroemer, Guido, Pietrocola, Federico
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7687910/
https://www.ncbi.nlm.nih.gov/pubmed/33298861
http://dx.doi.org/10.1038/s41420-020-00365-0
Descripción
Sumario:Salicylate, the active derivative of aspirin (acetylsalicylate), recapitulates the mode of action of caloric restriction inasmuch as it stimulates autophagy through the inhibition of the acetyltransferase activity of EP300. Here, we directly compared the metabolic effects of aspirin medication with those elicited by 48 h fasting in mice, revealing convergent alterations in the plasma and the heart metabolome. Aspirin caused a transient reduction of general protein acetylation in blood leukocytes, accompanied by the induction of autophagy. However, these effects on global protein acetylation could not be attributed to the mere inhibition of EP300, as determined by epistatic experiments and exploration of the acetyl-proteome from salicylate-treated EP300-deficient cells. Aspirin reduced high-fat diet-induced obesity, diabetes, and hepatosteatosis. These aspirin effects were observed in autophagy-competent mice but not in two different models of genetic (Atg4b(−/−) or Bcln1(+/−)) autophagy-deficiency. Aspirin also improved tumor control by immunogenic chemotherapeutics, and this effect was lost in T cell-deficient mice, as well as upon knockdown of an essential autophagy gene (Atg5) in cancer cells. Hence, the health-improving effects of aspirin depend on autophagy.