Cargando…
Prediction of hypotension events with physiologic vital sign signatures in the intensive care unit
BACKGROUND: Even brief hypotension is associated with increased morbidity and mortality. We developed a machine learning model to predict the initial hypotension event among intensive care unit (ICU) patients and designed an alert system for bedside implementation. MATERIALS AND METHODS: From the Me...
Autores principales: | Yoon, Joo Heung, Jeanselme, Vincent, Dubrawski, Artur, Hravnak, Marilyn, Pinsky, Michael R., Clermont, Gilles |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7687996/ https://www.ncbi.nlm.nih.gov/pubmed/33234161 http://dx.doi.org/10.1186/s13054-020-03379-3 |
Ejemplares similares
-
Predicting tachycardia as a surrogate for instability in the intensive care unit
por: Yoon, Joo Heung, et al.
Publicado: (2019) -
Forecasting escalation of cardio-respiratory instability using noninvasive vital sign monitoring data
por: Guillame-Bert, M, et al.
Publicado: (2015) -
Machine learning can classify vital sign alerts as real or artifact in online continuous monitoring data
por: Hravnak, M, et al.
Publicado: (2015) -
Semi automated adjudication of vital sign alerts in step-down units
por: Fiterau, M, et al.
Publicado: (2015) -
Understanding vital-sign abnormalities in critical care patients
por: Hugueny, S, et al.
Publicado: (2010)