Cargando…
A New Family of q-Supercongruences Modulo the Fourth Power of a Cyclotomic Polynomial
We establish a new family of q-supercongruences modulo the fourth power of a cyclotomic polynomial, and give several related results. Our main ingredients are q-microscoping and the Chinese remainder theorem for polynomials.
Autores principales: | Guo, Victor J. W., Schlosser, Michael J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7688099/ https://www.ncbi.nlm.nih.gov/pubmed/33269012 http://dx.doi.org/10.1007/s00025-020-01272-7 |
Ejemplares similares
-
Three families of q-supercongruences modulo the square and cube of a cyclotomic polynomial
por: Guo, Victor J. W., et al.
Publicado: (2022) -
Some q-supercongruences modulo the square and cube of a cyclotomic polynomial
por: Guo, Victor J. W., et al.
Publicado: (2021) -
New q-Analogues of Van Hamme’s (E.2) Supercongruence and of a Supercongruence by Swisher
por: Guo, Victor J. W., et al.
Publicado: (2023) -
On the coefficients of cyclotomic polynomials
por: Bachman, Gennady
Publicado: (2014) -
Supercongruences involving Domb numbers and binary quadratic forms
por: Mao, Guo-Shuai, et al.
Publicado: (2023)