Cargando…
Identifying transcriptomic correlates of histology using deep learning
Linking phenotypes to specific gene expression profiles is an extremely important problem in biology, which has been approached mainly by correlation methods or, more fundamentally, by studying the effects of gene perturbations. However, genome-wide perturbations involve extensive experimental effor...
Autores principales: | Badea, Liviu, Stănescu, Emil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7688140/ https://www.ncbi.nlm.nih.gov/pubmed/33237966 http://dx.doi.org/10.1371/journal.pone.0242858 |
Ejemplares similares
-
Using deep learning to identify bladder cancers with FGFR‐activating mutations from histology images
por: Velmahos, Constantine S., et al.
Publicado: (2021) -
DeepST: identifying spatial domains in spatial transcriptomics by deep learning
por: Xu, Chang, et al.
Publicado: (2022) -
Evaluation of Kidney Histological Images Using Unsupervised Deep Learning
por: Sato, Noriaki, et al.
Publicado: (2021) -
Identifying common transcriptome signatures of cancer by interpreting deep learning models
por: Jha, Anupama, et al.
Publicado: (2022) -
Classifying Retinal Degeneration in Histological Sections Using Deep Learning
por: Al Mouiee, Daniel, et al.
Publicado: (2021)