Cargando…
SE-stacking: Improving user purchase behavior prediction by information fusion and ensemble learning
Online shopping behavior has the characteristics of rich granularity dimension and data sparsity and presents a challenging task in e-commerce. Previous studies on user behavior prediction did not seriously discuss feature selection and ensemble design, which are important to improving the performan...
Autores principales: | Xu, Jing, Wang, Jie, Tian, Ye, Yan, Jiangpeng, Li, Xiu, Gao, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7688168/ https://www.ncbi.nlm.nih.gov/pubmed/33237926 http://dx.doi.org/10.1371/journal.pone.0242629 |
Ejemplares similares
-
RPI-SE: a stacking ensemble learning framework for ncRNA-protein interactions prediction using sequence information
por: Yi, Hai-Cheng, et al.
Publicado: (2020) -
An R package for ensemble learning stacking
por: Nukui, Taichi, et al.
Publicado: (2023) -
Stack-VTP: prediction of vesicle transport proteins based on stacked ensemble classifier and evolutionary information
por: Chen, Yu, et al.
Publicado: (2023) -
A Stacking Ensemble Learning Framework for Genomic Prediction
por: Liang, Mang, et al.
Publicado: (2021) -
StackBRAF: A Large-Scale Stacking Ensemble Learning
for BRAF Affinity Prediction
por: Syahid, Nur Fadhilah, et al.
Publicado: (2023)