Cargando…
A thorough analysis of the contribution of experimental, derived and sequence-based predicted protein-protein interactions for functional annotation of proteins
Physical interaction between two proteins is strong evidence that the proteins are involved in the same biological process, making Protein-Protein Interaction (PPI) networks a valuable data resource for predicting the cellular functions of proteins. However, PPI networks are largely incomplete for n...
Autores principales: | Makrodimitris, Stavros, Reinders, Marcel, van Ham, Roeland |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7688180/ https://www.ncbi.nlm.nih.gov/pubmed/33237964 http://dx.doi.org/10.1371/journal.pone.0242723 |
Ejemplares similares
-
Improving protein function prediction using protein sequence and GO-term similarities
por: Makrodimitris, Stavros, et al.
Publicado: (2019) -
Unsupervised protein embeddings outperform hand-crafted sequence and structure features at predicting molecular function
por: Villegas-Morcillo, Amelia, et al.
Publicado: (2020) -
The Power of Universal Contextualized Protein Embeddings in
Cross-species Protein Function Prediction
por: van den Bent, Irene, et al.
Publicado: (2021) -
Automatic Gene Function Prediction in the 2020’s
por: Makrodimitris, Stavros, et al.
Publicado: (2020) -
Metric learning on expression data for gene function prediction
por: Makrodimitris, Stavros, et al.
Publicado: (2020)