Cargando…
Selection for Resistance to a Glyphosate-Containing Herbicide in Salmonella enterica Does Not Result in a Sustained Activation of the Tolerance Response or Increased Cross-Tolerance and Cross-Resistance to Clinically Important Antibiotics
Evolution of bacterial tolerance to antimicrobials precedes evolution of resistance and may result in cross-tolerance, cross-resistance, or collateral sensitivity to other antibiotics. Transient exposure of gut bacteria to glyphosate, the world’s most widely used herbicide, has been linked to the ac...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7688225/ https://www.ncbi.nlm.nih.gov/pubmed/33008821 http://dx.doi.org/10.1128/AEM.01204-20 |
_version_ | 1783613666811183104 |
---|---|
author | Pöppe, Judith Bote, Katrin Ramesh, Abhinaya Murugaiyan, Jayaseelan Kuropka, Benno Kühl, Michael Johnston, Paul Roesler, Uwe Makarova, Olga |
author_facet | Pöppe, Judith Bote, Katrin Ramesh, Abhinaya Murugaiyan, Jayaseelan Kuropka, Benno Kühl, Michael Johnston, Paul Roesler, Uwe Makarova, Olga |
author_sort | Pöppe, Judith |
collection | PubMed |
description | Evolution of bacterial tolerance to antimicrobials precedes evolution of resistance and may result in cross-tolerance, cross-resistance, or collateral sensitivity to other antibiotics. Transient exposure of gut bacteria to glyphosate, the world’s most widely used herbicide, has been linked to the activation of the stress response and changes in susceptibility to antibiotics. In this study, we investigated whether chronic exposure to a glyphosate-based herbicide (GBH) results in resistance, a constitutive activation of the tolerance and stress responses, and cross-tolerance or cross-resistance to antibiotics. Of the 10 farm animal-derived clinical isolates of Salmonella enterica subjected to experimental evolution in increasing concentrations of GBH, three isolates showed stable resistance with mutations associated with the glyphosate target gene aroA and no fitness costs. Global quantitative proteomics analysis demonstrated activation of the cellular tolerance and stress response during the transient exposure to GBH but not constitutively in the resistant mutants. Resistant mutants displayed no cross-resistance or cross-tolerance to antibiotics. These results suggest that while transient exposure to GBH triggers cellular tolerance response in Salmonella enterica, this response does not become genetically fixed after selection for resistance to GBH and does not result in increased cross-tolerance or cross-resistance to clinically important antibiotics under our experimental conditions. IMPORTANCE Glyphosate-based herbicides (GBH) are among the world’s most popular, with traces commonly found in food, feed, and the environment. Such high ubiquity means that the herbicide may come into contact with various microorganisms, on which it acts as an antimicrobial, and it may select for resistance and cross-resistance to clinically important antibiotics. It is therefore important to estimate whether the widespread use of pesticides may be an underappreciated source of antibiotic-resistant microorganisms that may compromise efficiency of antibiotic treatments in humans and animals. |
format | Online Article Text |
id | pubmed-7688225 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-76882252020-12-09 Selection for Resistance to a Glyphosate-Containing Herbicide in Salmonella enterica Does Not Result in a Sustained Activation of the Tolerance Response or Increased Cross-Tolerance and Cross-Resistance to Clinically Important Antibiotics Pöppe, Judith Bote, Katrin Ramesh, Abhinaya Murugaiyan, Jayaseelan Kuropka, Benno Kühl, Michael Johnston, Paul Roesler, Uwe Makarova, Olga Appl Environ Microbiol Public and Environmental Health Microbiology Evolution of bacterial tolerance to antimicrobials precedes evolution of resistance and may result in cross-tolerance, cross-resistance, or collateral sensitivity to other antibiotics. Transient exposure of gut bacteria to glyphosate, the world’s most widely used herbicide, has been linked to the activation of the stress response and changes in susceptibility to antibiotics. In this study, we investigated whether chronic exposure to a glyphosate-based herbicide (GBH) results in resistance, a constitutive activation of the tolerance and stress responses, and cross-tolerance or cross-resistance to antibiotics. Of the 10 farm animal-derived clinical isolates of Salmonella enterica subjected to experimental evolution in increasing concentrations of GBH, three isolates showed stable resistance with mutations associated with the glyphosate target gene aroA and no fitness costs. Global quantitative proteomics analysis demonstrated activation of the cellular tolerance and stress response during the transient exposure to GBH but not constitutively in the resistant mutants. Resistant mutants displayed no cross-resistance or cross-tolerance to antibiotics. These results suggest that while transient exposure to GBH triggers cellular tolerance response in Salmonella enterica, this response does not become genetically fixed after selection for resistance to GBH and does not result in increased cross-tolerance or cross-resistance to clinically important antibiotics under our experimental conditions. IMPORTANCE Glyphosate-based herbicides (GBH) are among the world’s most popular, with traces commonly found in food, feed, and the environment. Such high ubiquity means that the herbicide may come into contact with various microorganisms, on which it acts as an antimicrobial, and it may select for resistance and cross-resistance to clinically important antibiotics. It is therefore important to estimate whether the widespread use of pesticides may be an underappreciated source of antibiotic-resistant microorganisms that may compromise efficiency of antibiotic treatments in humans and animals. American Society for Microbiology 2020-11-24 /pmc/articles/PMC7688225/ /pubmed/33008821 http://dx.doi.org/10.1128/AEM.01204-20 Text en Copyright © 2020 Pöppe et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Public and Environmental Health Microbiology Pöppe, Judith Bote, Katrin Ramesh, Abhinaya Murugaiyan, Jayaseelan Kuropka, Benno Kühl, Michael Johnston, Paul Roesler, Uwe Makarova, Olga Selection for Resistance to a Glyphosate-Containing Herbicide in Salmonella enterica Does Not Result in a Sustained Activation of the Tolerance Response or Increased Cross-Tolerance and Cross-Resistance to Clinically Important Antibiotics |
title | Selection for Resistance to a Glyphosate-Containing Herbicide in Salmonella enterica Does Not Result in a Sustained Activation of the Tolerance Response or Increased Cross-Tolerance and Cross-Resistance to Clinically Important Antibiotics |
title_full | Selection for Resistance to a Glyphosate-Containing Herbicide in Salmonella enterica Does Not Result in a Sustained Activation of the Tolerance Response or Increased Cross-Tolerance and Cross-Resistance to Clinically Important Antibiotics |
title_fullStr | Selection for Resistance to a Glyphosate-Containing Herbicide in Salmonella enterica Does Not Result in a Sustained Activation of the Tolerance Response or Increased Cross-Tolerance and Cross-Resistance to Clinically Important Antibiotics |
title_full_unstemmed | Selection for Resistance to a Glyphosate-Containing Herbicide in Salmonella enterica Does Not Result in a Sustained Activation of the Tolerance Response or Increased Cross-Tolerance and Cross-Resistance to Clinically Important Antibiotics |
title_short | Selection for Resistance to a Glyphosate-Containing Herbicide in Salmonella enterica Does Not Result in a Sustained Activation of the Tolerance Response or Increased Cross-Tolerance and Cross-Resistance to Clinically Important Antibiotics |
title_sort | selection for resistance to a glyphosate-containing herbicide in salmonella enterica does not result in a sustained activation of the tolerance response or increased cross-tolerance and cross-resistance to clinically important antibiotics |
topic | Public and Environmental Health Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7688225/ https://www.ncbi.nlm.nih.gov/pubmed/33008821 http://dx.doi.org/10.1128/AEM.01204-20 |
work_keys_str_mv | AT poppejudith selectionforresistancetoaglyphosatecontainingherbicideinsalmonellaentericadoesnotresultinasustainedactivationofthetoleranceresponseorincreasedcrosstoleranceandcrossresistancetoclinicallyimportantantibiotics AT botekatrin selectionforresistancetoaglyphosatecontainingherbicideinsalmonellaentericadoesnotresultinasustainedactivationofthetoleranceresponseorincreasedcrosstoleranceandcrossresistancetoclinicallyimportantantibiotics AT rameshabhinaya selectionforresistancetoaglyphosatecontainingherbicideinsalmonellaentericadoesnotresultinasustainedactivationofthetoleranceresponseorincreasedcrosstoleranceandcrossresistancetoclinicallyimportantantibiotics AT murugaiyanjayaseelan selectionforresistancetoaglyphosatecontainingherbicideinsalmonellaentericadoesnotresultinasustainedactivationofthetoleranceresponseorincreasedcrosstoleranceandcrossresistancetoclinicallyimportantantibiotics AT kuropkabenno selectionforresistancetoaglyphosatecontainingherbicideinsalmonellaentericadoesnotresultinasustainedactivationofthetoleranceresponseorincreasedcrosstoleranceandcrossresistancetoclinicallyimportantantibiotics AT kuhlmichael selectionforresistancetoaglyphosatecontainingherbicideinsalmonellaentericadoesnotresultinasustainedactivationofthetoleranceresponseorincreasedcrosstoleranceandcrossresistancetoclinicallyimportantantibiotics AT johnstonpaul selectionforresistancetoaglyphosatecontainingherbicideinsalmonellaentericadoesnotresultinasustainedactivationofthetoleranceresponseorincreasedcrosstoleranceandcrossresistancetoclinicallyimportantantibiotics AT roesleruwe selectionforresistancetoaglyphosatecontainingherbicideinsalmonellaentericadoesnotresultinasustainedactivationofthetoleranceresponseorincreasedcrosstoleranceandcrossresistancetoclinicallyimportantantibiotics AT makarovaolga selectionforresistancetoaglyphosatecontainingherbicideinsalmonellaentericadoesnotresultinasustainedactivationofthetoleranceresponseorincreasedcrosstoleranceandcrossresistancetoclinicallyimportantantibiotics |