Cargando…
Controlling colloidal crystals via morphing energy landscapes and reinforcement learning
We report a feedback control method to remove grain boundaries and produce circular shaped colloidal crystals using morphing energy landscapes and reinforcement learning–based policies. We demonstrate this approach in optical microscopy and computer simulation experiments for colloidal particles in...
Autores principales: | Zhang, Jianli, Yang, Junyan, Zhang, Yuanxing, Bevan, Michael A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7688337/ https://www.ncbi.nlm.nih.gov/pubmed/33239301 http://dx.doi.org/10.1126/sciadv.abd6716 |
Ejemplares similares
-
Asymmetric Airfoil Morphing via Deep Reinforcement Learning
por: Lu, Kelin, et al.
Publicado: (2022) -
Energy landscapes of planar colloidal clusters
por: Morgan, John W. R., et al.
Publicado: (2014) -
Colloidal crystal grain boundary formation and motion
por: Edwards, Tara D., et al.
Publicado: (2014) -
Morphing of liquid crystal surfaces by emergent collectivity
por: van der Kooij, Hanne M., et al.
Publicado: (2019) -
Opto-thermophoretic assembly of colloidal matter
por: Lin, Linhan, et al.
Publicado: (2017)