Cargando…

Construction and Validation of a Convenient Clinical Nomogram to Predict the Risk of Brain Metastasis in Renal Cell Carcinoma Patients

Brain metastasis (BM) is a typical type of metastasis in renal cell carcinoma (RCC) patients. The early detection of BM is likely a crucial step for RCC patients to receive appropriate treatment and prolong their overall survival. The aim of this study was to identify the independent predictors of B...

Descripción completa

Detalles Bibliográficos
Autores principales: Tong, Yuexin, Huang, Zhangheng, Hu, Chuan, Chi, Changxing, Lv, Meng, Song, Youxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7688358/
https://www.ncbi.nlm.nih.gov/pubmed/33282957
http://dx.doi.org/10.1155/2020/9501760
Descripción
Sumario:Brain metastasis (BM) is a typical type of metastasis in renal cell carcinoma (RCC) patients. The early detection of BM is likely a crucial step for RCC patients to receive appropriate treatment and prolong their overall survival. The aim of this study was to identify the independent predictors of BM and construct a nomogram to predict the risk of BM. Demographic and clinicopathological data were obtained from the Surveillance, Epidemiology, and End Results (SEER) database for RCC patients between 2010 and 2015. Univariate and multivariate logistic regression analyses were performed to identify the independent risk factors, and then, a visual nomogram was constructed. Multiple parameters were used to evaluate the discrimination and clinical value. We finally included 42577 RCC patients. Multivariate logistic regression analysis showed that histological type, tumor size, bone metastatic status, and lung metastatic status were independent BM-associated risk factors for RCC. We developed a nomogram to predict the risk of BM in patients with RCC, which showed favorable calibration with a C-index of 0.924 (0.903-0.945) in the training cohort and 0.911 (0.871-0.952) in the validation cohort. The calibration curves and decision curve analysis (DCA) also demonstrated the reliability and accuracy of the clinical prediction model. The nomogram was shown to be a practical, precise, and personalized clinical tool for identifying the RCC patients with a high risk of BM, which not only will contribute to the more reasonable allocation of medical resources but will also enable a further improvements in the prognosis and quality of life of RCC patients.