Cargando…
Deep convolutional neural networks: Outperforming established algorithms in the evaluation of industrial optical coherence tomography (OCT) images of pharmaceutical coatings
This paper presents a novel evaluation approach for optical coherence tomography (OCT) image analysis of pharmaceutical solid dosage forms based on deep convolutional neural networks (CNNs). As a proof of concept, CNNs were applied to image data from both, in- and at-line OCT implementations, monito...
Autores principales: | Wolfgang, Matthias, Weißensteiner, Michael, Clarke, Phillip, Hsiao, Wen-Kai, Khinast, Johannes G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7689324/ https://www.ncbi.nlm.nih.gov/pubmed/33294841 http://dx.doi.org/10.1016/j.ijpx.2020.100058 |
Ejemplares similares
-
Automated thresholding algorithms outperform manual thresholding in macular optical coherence tomography angiography image analysis
por: Terheyden, Jan Henrik, et al.
Publicado: (2020) -
From industrial laboratory directly to operating table: the vicissitudes of optical coherence tomography (OCT)
por: Wroński, Stanisław
Publicado: (2013) -
Feasibility of In-line monitoring of critical coating quality attributes via OCT: Thickness, variability, film homogeneity and roughness
por: Sacher, Stephan, et al.
Publicado: (2020) -
Quantifying Pharmaceutical Film Coating with Optical Coherence Tomography and Terahertz Pulsed Imaging: An Evaluation
por: Lin, Hungyen, et al.
Publicado: (2015) -
FN-OCT: Disease Detection Algorithm for Retinal Optical Coherence Tomography Based on a Fusion Network
por: Ai, Zhuang, et al.
Publicado: (2022)