Cargando…
Biomarker discovery for predicting spontaneous preterm birth from gene expression data by regularized logistic regression
In this work, we provide a computational method of regularized logistic regression for discovering biomarkers of spontaneous preterm birth (SPTB) from gene expression data. The successful identification of SPTB biomarkers will greatly benefit the interference of infant gestational age for reducing t...
Autores principales: | Li, Lingyu, Liu, Zhi-Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7689379/ https://www.ncbi.nlm.nih.gov/pubmed/33294138 http://dx.doi.org/10.1016/j.csbj.2020.10.028 |
Ejemplares similares
-
Prediction of preterm birth in nulliparous women using logistic regression and machine learning
por: Arabi Belaghi, Reza, et al.
Publicado: (2021) -
Supporting Regularized Logistic Regression Privately and Efficiently
por: Li, Wenfa, et al.
Publicado: (2016) -
Adaptive group-regularized logistic elastic net regression
por: Münch, Magnus M, et al.
Publicado: (2019) -
Regularized logistic regression with network-based pairwise interaction for biomarker identification in breast cancer
por: Wu, Meng-Yun, et al.
Publicado: (2016) -
Comprehensible Predictive Modeling Using Regularized Logistic Regression and Comorbidity Based Features
por: Stiglic, Gregor, et al.
Publicado: (2015)