Cargando…
Deep learning for small and big data in psychiatry
Psychiatry today must gain a better understanding of the common and distinct pathophysiological mechanisms underlying psychiatric disorders in order to deliver more effective, person-tailored treatments. To this end, it appears that the analysis of ‘small’ experimental samples using conventional sta...
Autores principales: | Koppe, Georgia, Meyer-Lindenberg, Andreas, Durstewitz, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7689428/ https://www.ncbi.nlm.nih.gov/pubmed/32668442 http://dx.doi.org/10.1038/s41386-020-0767-z |
Ejemplares similares
-
Big behavior: challenges and opportunities in a new era of deep behavior profiling
por: von Ziegler, Lukas, et al.
Publicado: (2020) -
Digital health data-driven approaches to understand human behavior
por: Marsch, Lisa A.
Publicado: (2020) -
Interpretation of psychiatric genome-wide association studies with multispecies heterogeneous functional genomic data integration
por: Reynolds, Timothy, et al.
Publicado: (2020) -
The ABCD study: understanding the development of risk for mental and physical health outcomes
por: Karcher, Nicole R., et al.
Publicado: (2020) -
Systems-based proteomics to resolve the biology of Alzheimer’s disease beyond amyloid and tau
por: Rayaprolu, Sruti, et al.
Publicado: (2020)