Cargando…
Terbium(III)-thiacalix[4]arene nanosensor for highly sensitive intracellular monitoring of temperature changes within the 303–313 K range
The work introduces hydrophilic PSS-[Tb(2)(TCAn)(2)] nanoparticles to be applied as highly sensitive intracellular temperature nanosensors. The nanoparticles are synthesized by solvent-induced nanoprecipitation of [Tb(2)(TCAn)(2)] complexes (TCAn - thiacalix[4]arenes bearing different upper-rim subs...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7689473/ https://www.ncbi.nlm.nih.gov/pubmed/33239623 http://dx.doi.org/10.1038/s41598-020-77512-1 |
_version_ | 1783613869725319168 |
---|---|
author | Zairov, Rustem R. Dovzhenko, Alexey P. Sapunova, Anastasiia S. Voloshina, Alexandra D. Sarkanich, Kirill A. Daminova, Amina G. Nizameev, Irek R. Lapaev, Dmitry V. Sudakova, Svetlana N. Podyachev, Sergey N. Petrov, Konstantin A. Vomiero, Alberto Mustafina, Asiya R. |
author_facet | Zairov, Rustem R. Dovzhenko, Alexey P. Sapunova, Anastasiia S. Voloshina, Alexandra D. Sarkanich, Kirill A. Daminova, Amina G. Nizameev, Irek R. Lapaev, Dmitry V. Sudakova, Svetlana N. Podyachev, Sergey N. Petrov, Konstantin A. Vomiero, Alberto Mustafina, Asiya R. |
author_sort | Zairov, Rustem R. |
collection | PubMed |
description | The work introduces hydrophilic PSS-[Tb(2)(TCAn)(2)] nanoparticles to be applied as highly sensitive intracellular temperature nanosensors. The nanoparticles are synthesized by solvent-induced nanoprecipitation of [Tb(2)(TCAn)(2)] complexes (TCAn - thiacalix[4]arenes bearing different upper-rim substituents: unsubstituted TCA1, tert-buthyl-substituted TCA2, di- and tetra-brominated TCA3 and TCA4) with the use of polystyrenesulfonate (PSS) as stabilizer. The temperature responsive luminescence behavior of PSS-[Tb(2)(TCAn)(2)] within 293–333 K range in water is modulated by reversible changes derived from the back energy transfer from metal to ligand (M* → T(1)) correlating with the energy gap between the triplet levels of ligands and resonant (5)D(4) level of Tb(3+) ion. The lowering of the triplet level (T(1)) energies going from TCA1 and TCA2 to their brominated counterparts TCA3 and TCA4 facilitates the back energy transfer. The highest ever reported temperature sensitivity for intracellular temperature nanosensors is obtained for PSS-[Tb(2)(TCA4)(2)] (S(I) = 5.25% K(−1)), while PSS-[Tb(2)(TCA3)(2)] is characterized by a moderate one (S(I) = 2.96% K(−1)). The insignificant release of toxic Tb(3+) ions from PSS-[Tb(2)(TCAn)(2)] within heating/cooling cycle and the low cytotoxicity of the colloids point to their applicability in intracellular temperature monitoring. The cell internalization of PSS-[Tb(2)(TCAn)(2)] (n = 3, 4) marks the cell cytoplasm by green Tb(3+)-luminescence, which exhibits detectable quenching when the cell samples are heated from 303 to 313 K. The colloids hold unprecedented potential for in vivo intracellular monitoring of temperature changes induced by hyperthermia or pathological processes in narrow range of physiological temperatures. |
format | Online Article Text |
id | pubmed-7689473 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-76894732020-11-27 Terbium(III)-thiacalix[4]arene nanosensor for highly sensitive intracellular monitoring of temperature changes within the 303–313 K range Zairov, Rustem R. Dovzhenko, Alexey P. Sapunova, Anastasiia S. Voloshina, Alexandra D. Sarkanich, Kirill A. Daminova, Amina G. Nizameev, Irek R. Lapaev, Dmitry V. Sudakova, Svetlana N. Podyachev, Sergey N. Petrov, Konstantin A. Vomiero, Alberto Mustafina, Asiya R. Sci Rep Article The work introduces hydrophilic PSS-[Tb(2)(TCAn)(2)] nanoparticles to be applied as highly sensitive intracellular temperature nanosensors. The nanoparticles are synthesized by solvent-induced nanoprecipitation of [Tb(2)(TCAn)(2)] complexes (TCAn - thiacalix[4]arenes bearing different upper-rim substituents: unsubstituted TCA1, tert-buthyl-substituted TCA2, di- and tetra-brominated TCA3 and TCA4) with the use of polystyrenesulfonate (PSS) as stabilizer. The temperature responsive luminescence behavior of PSS-[Tb(2)(TCAn)(2)] within 293–333 K range in water is modulated by reversible changes derived from the back energy transfer from metal to ligand (M* → T(1)) correlating with the energy gap between the triplet levels of ligands and resonant (5)D(4) level of Tb(3+) ion. The lowering of the triplet level (T(1)) energies going from TCA1 and TCA2 to their brominated counterparts TCA3 and TCA4 facilitates the back energy transfer. The highest ever reported temperature sensitivity for intracellular temperature nanosensors is obtained for PSS-[Tb(2)(TCA4)(2)] (S(I) = 5.25% K(−1)), while PSS-[Tb(2)(TCA3)(2)] is characterized by a moderate one (S(I) = 2.96% K(−1)). The insignificant release of toxic Tb(3+) ions from PSS-[Tb(2)(TCAn)(2)] within heating/cooling cycle and the low cytotoxicity of the colloids point to their applicability in intracellular temperature monitoring. The cell internalization of PSS-[Tb(2)(TCAn)(2)] (n = 3, 4) marks the cell cytoplasm by green Tb(3+)-luminescence, which exhibits detectable quenching when the cell samples are heated from 303 to 313 K. The colloids hold unprecedented potential for in vivo intracellular monitoring of temperature changes induced by hyperthermia or pathological processes in narrow range of physiological temperatures. Nature Publishing Group UK 2020-11-25 /pmc/articles/PMC7689473/ /pubmed/33239623 http://dx.doi.org/10.1038/s41598-020-77512-1 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Zairov, Rustem R. Dovzhenko, Alexey P. Sapunova, Anastasiia S. Voloshina, Alexandra D. Sarkanich, Kirill A. Daminova, Amina G. Nizameev, Irek R. Lapaev, Dmitry V. Sudakova, Svetlana N. Podyachev, Sergey N. Petrov, Konstantin A. Vomiero, Alberto Mustafina, Asiya R. Terbium(III)-thiacalix[4]arene nanosensor for highly sensitive intracellular monitoring of temperature changes within the 303–313 K range |
title | Terbium(III)-thiacalix[4]arene nanosensor for highly sensitive intracellular monitoring of temperature changes within the 303–313 K range |
title_full | Terbium(III)-thiacalix[4]arene nanosensor for highly sensitive intracellular monitoring of temperature changes within the 303–313 K range |
title_fullStr | Terbium(III)-thiacalix[4]arene nanosensor for highly sensitive intracellular monitoring of temperature changes within the 303–313 K range |
title_full_unstemmed | Terbium(III)-thiacalix[4]arene nanosensor for highly sensitive intracellular monitoring of temperature changes within the 303–313 K range |
title_short | Terbium(III)-thiacalix[4]arene nanosensor for highly sensitive intracellular monitoring of temperature changes within the 303–313 K range |
title_sort | terbium(iii)-thiacalix[4]arene nanosensor for highly sensitive intracellular monitoring of temperature changes within the 303–313 k range |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7689473/ https://www.ncbi.nlm.nih.gov/pubmed/33239623 http://dx.doi.org/10.1038/s41598-020-77512-1 |
work_keys_str_mv | AT zairovrustemr terbiumiiithiacalix4arenenanosensorforhighlysensitiveintracellularmonitoringoftemperaturechangeswithinthe303313krange AT dovzhenkoalexeyp terbiumiiithiacalix4arenenanosensorforhighlysensitiveintracellularmonitoringoftemperaturechangeswithinthe303313krange AT sapunovaanastasiias terbiumiiithiacalix4arenenanosensorforhighlysensitiveintracellularmonitoringoftemperaturechangeswithinthe303313krange AT voloshinaalexandrad terbiumiiithiacalix4arenenanosensorforhighlysensitiveintracellularmonitoringoftemperaturechangeswithinthe303313krange AT sarkanichkirilla terbiumiiithiacalix4arenenanosensorforhighlysensitiveintracellularmonitoringoftemperaturechangeswithinthe303313krange AT daminovaaminag terbiumiiithiacalix4arenenanosensorforhighlysensitiveintracellularmonitoringoftemperaturechangeswithinthe303313krange AT nizameevirekr terbiumiiithiacalix4arenenanosensorforhighlysensitiveintracellularmonitoringoftemperaturechangeswithinthe303313krange AT lapaevdmitryv terbiumiiithiacalix4arenenanosensorforhighlysensitiveintracellularmonitoringoftemperaturechangeswithinthe303313krange AT sudakovasvetlanan terbiumiiithiacalix4arenenanosensorforhighlysensitiveintracellularmonitoringoftemperaturechangeswithinthe303313krange AT podyachevsergeyn terbiumiiithiacalix4arenenanosensorforhighlysensitiveintracellularmonitoringoftemperaturechangeswithinthe303313krange AT petrovkonstantina terbiumiiithiacalix4arenenanosensorforhighlysensitiveintracellularmonitoringoftemperaturechangeswithinthe303313krange AT vomieroalberto terbiumiiithiacalix4arenenanosensorforhighlysensitiveintracellularmonitoringoftemperaturechangeswithinthe303313krange AT mustafinaasiyar terbiumiiithiacalix4arenenanosensorforhighlysensitiveintracellularmonitoringoftemperaturechangeswithinthe303313krange |