Cargando…
CGINet: graph convolutional network-based model for identifying chemical-gene interaction in an integrated multi-relational graph
BACKGROUND: Elucidation of interactive relation between chemicals and genes is of key relevance not only for discovering new drug leads in drug development but also for repositioning existing drugs to novel therapeutic targets. Recently, biological network-based approaches have been proven to be eff...
Autores principales: | Wang, Wei, Yang, Xi, Wu, Chengkun, Yang, Canqun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7689985/ https://www.ncbi.nlm.nih.gov/pubmed/33243142 http://dx.doi.org/10.1186/s12859-020-03899-3 |
Ejemplares similares
-
Chemical toxicity prediction based on semi-supervised learning and graph convolutional neural network
por: Chen, Jiarui, et al.
Publicado: (2021) -
Predicting functions of maize proteins using graph convolutional network
por: Zhou, Guangjie, et al.
Publicado: (2020) -
Identification of early mild cognitive impairment using multi-modal data and graph convolutional networks
por: Liu, Jin, et al.
Publicado: (2020) -
Single-cell classification using graph convolutional networks
por: Wang, Tianyu, et al.
Publicado: (2021) -
METAMVGL: a multi-view graph-based metagenomic contig binning algorithm by integrating assembly and paired-end graphs
por: Zhang, Zhenmiao, et al.
Publicado: (2021)