Cargando…
Kekulene: On-Surface Synthesis, Orbital Structure, and Aromatic Stabilization
[Image: see text] We revisit the question of kekulene’s aromaticity by focusing on the electronic structure of its frontier orbitals as determined by angle-resolved photoemission spectroscopy. To this end, we have developed a specially designed precursor, 1,4,7(2,7)-triphenanthrenacyclononaphane-2,5...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7690051/ https://www.ncbi.nlm.nih.gov/pubmed/33186031 http://dx.doi.org/10.1021/acsnano.0c06798 |
_version_ | 1783613990239207424 |
---|---|
author | Haags, Anja Reichmann, Alexander Fan, Qitang Egger, Larissa Kirschner, Hans Naumann, Tim Werner, Simon Vollgraff, Tobias Sundermeyer, Jörg Eschmann, Lukas Yang, Xiaosheng Brandstetter, Dominik Bocquet, François C. Koller, Georg Gottwald, Alexander Richter, Mathias Ramsey, Michael G. Rohlfing, Michael Puschnig, Peter Gottfried, J. Michael Soubatch, Serguei Tautz, F. Stefan |
author_facet | Haags, Anja Reichmann, Alexander Fan, Qitang Egger, Larissa Kirschner, Hans Naumann, Tim Werner, Simon Vollgraff, Tobias Sundermeyer, Jörg Eschmann, Lukas Yang, Xiaosheng Brandstetter, Dominik Bocquet, François C. Koller, Georg Gottwald, Alexander Richter, Mathias Ramsey, Michael G. Rohlfing, Michael Puschnig, Peter Gottfried, J. Michael Soubatch, Serguei Tautz, F. Stefan |
author_sort | Haags, Anja |
collection | PubMed |
description | [Image: see text] We revisit the question of kekulene’s aromaticity by focusing on the electronic structure of its frontier orbitals as determined by angle-resolved photoemission spectroscopy. To this end, we have developed a specially designed precursor, 1,4,7(2,7)-triphenanthrenacyclononaphane-2,5,8-triene, which allows us to prepare sufficient quantities of kekulene of high purity directly on a Cu(111) surface, as confirmed by scanning tunneling microscopy. Supported by density functional calculations, we determine the orbital structure of kekulene’s highest occupied molecular orbital by photoemission tomography. In agreement with a recent aromaticity assessment of kekulene based solely on C–C bond lengths, we conclude that the π-conjugation of kekulene is better described by the Clar model rather than a superaromatic model. Thus, by exploiting the capabilities of photoemission tomography, we shed light on the question which consequences aromaticity holds for the frontier electronic structure of a π-conjugated molecule. |
format | Online Article Text |
id | pubmed-7690051 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-76900512020-11-27 Kekulene: On-Surface Synthesis, Orbital Structure, and Aromatic Stabilization Haags, Anja Reichmann, Alexander Fan, Qitang Egger, Larissa Kirschner, Hans Naumann, Tim Werner, Simon Vollgraff, Tobias Sundermeyer, Jörg Eschmann, Lukas Yang, Xiaosheng Brandstetter, Dominik Bocquet, François C. Koller, Georg Gottwald, Alexander Richter, Mathias Ramsey, Michael G. Rohlfing, Michael Puschnig, Peter Gottfried, J. Michael Soubatch, Serguei Tautz, F. Stefan ACS Nano [Image: see text] We revisit the question of kekulene’s aromaticity by focusing on the electronic structure of its frontier orbitals as determined by angle-resolved photoemission spectroscopy. To this end, we have developed a specially designed precursor, 1,4,7(2,7)-triphenanthrenacyclononaphane-2,5,8-triene, which allows us to prepare sufficient quantities of kekulene of high purity directly on a Cu(111) surface, as confirmed by scanning tunneling microscopy. Supported by density functional calculations, we determine the orbital structure of kekulene’s highest occupied molecular orbital by photoemission tomography. In agreement with a recent aromaticity assessment of kekulene based solely on C–C bond lengths, we conclude that the π-conjugation of kekulene is better described by the Clar model rather than a superaromatic model. Thus, by exploiting the capabilities of photoemission tomography, we shed light on the question which consequences aromaticity holds for the frontier electronic structure of a π-conjugated molecule. American Chemical Society 2020-11-13 2020-11-24 /pmc/articles/PMC7690051/ /pubmed/33186031 http://dx.doi.org/10.1021/acsnano.0c06798 Text en © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Haags, Anja Reichmann, Alexander Fan, Qitang Egger, Larissa Kirschner, Hans Naumann, Tim Werner, Simon Vollgraff, Tobias Sundermeyer, Jörg Eschmann, Lukas Yang, Xiaosheng Brandstetter, Dominik Bocquet, François C. Koller, Georg Gottwald, Alexander Richter, Mathias Ramsey, Michael G. Rohlfing, Michael Puschnig, Peter Gottfried, J. Michael Soubatch, Serguei Tautz, F. Stefan Kekulene: On-Surface Synthesis, Orbital Structure, and Aromatic Stabilization |
title | Kekulene:
On-Surface Synthesis, Orbital Structure,
and Aromatic Stabilization |
title_full | Kekulene:
On-Surface Synthesis, Orbital Structure,
and Aromatic Stabilization |
title_fullStr | Kekulene:
On-Surface Synthesis, Orbital Structure,
and Aromatic Stabilization |
title_full_unstemmed | Kekulene:
On-Surface Synthesis, Orbital Structure,
and Aromatic Stabilization |
title_short | Kekulene:
On-Surface Synthesis, Orbital Structure,
and Aromatic Stabilization |
title_sort | kekulene:
on-surface synthesis, orbital structure,
and aromatic stabilization |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7690051/ https://www.ncbi.nlm.nih.gov/pubmed/33186031 http://dx.doi.org/10.1021/acsnano.0c06798 |
work_keys_str_mv | AT haagsanja kekuleneonsurfacesynthesisorbitalstructureandaromaticstabilization AT reichmannalexander kekuleneonsurfacesynthesisorbitalstructureandaromaticstabilization AT fanqitang kekuleneonsurfacesynthesisorbitalstructureandaromaticstabilization AT eggerlarissa kekuleneonsurfacesynthesisorbitalstructureandaromaticstabilization AT kirschnerhans kekuleneonsurfacesynthesisorbitalstructureandaromaticstabilization AT naumanntim kekuleneonsurfacesynthesisorbitalstructureandaromaticstabilization AT wernersimon kekuleneonsurfacesynthesisorbitalstructureandaromaticstabilization AT vollgrafftobias kekuleneonsurfacesynthesisorbitalstructureandaromaticstabilization AT sundermeyerjorg kekuleneonsurfacesynthesisorbitalstructureandaromaticstabilization AT eschmannlukas kekuleneonsurfacesynthesisorbitalstructureandaromaticstabilization AT yangxiaosheng kekuleneonsurfacesynthesisorbitalstructureandaromaticstabilization AT brandstetterdominik kekuleneonsurfacesynthesisorbitalstructureandaromaticstabilization AT bocquetfrancoisc kekuleneonsurfacesynthesisorbitalstructureandaromaticstabilization AT kollergeorg kekuleneonsurfacesynthesisorbitalstructureandaromaticstabilization AT gottwaldalexander kekuleneonsurfacesynthesisorbitalstructureandaromaticstabilization AT richtermathias kekuleneonsurfacesynthesisorbitalstructureandaromaticstabilization AT ramseymichaelg kekuleneonsurfacesynthesisorbitalstructureandaromaticstabilization AT rohlfingmichael kekuleneonsurfacesynthesisorbitalstructureandaromaticstabilization AT puschnigpeter kekuleneonsurfacesynthesisorbitalstructureandaromaticstabilization AT gottfriedjmichael kekuleneonsurfacesynthesisorbitalstructureandaromaticstabilization AT soubatchserguei kekuleneonsurfacesynthesisorbitalstructureandaromaticstabilization AT tautzfstefan kekuleneonsurfacesynthesisorbitalstructureandaromaticstabilization |