Cargando…

Geographical access to point-of-care testing for hypertensive disorders of pregnancy as an integral part of maternal healthcare in Ghana

BACKGROUND: Hypertensive disorders of pregnancy (HDP) are associated with high maternal mortality in Ghana and globally. Evidence shows that there is poor availability of pregnancy-related point-of-care (POC) tests in Ghana’s primary healthcare (PHC) clinics (health centre or community-based health...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuupiel, Desmond, Adu, Kwame Manu, Bawontuo, Vitalis, Tabong, Philip T. N., Adogboba, Duncan A., Mashamba-Thompson, Tivani P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7690122/
https://www.ncbi.nlm.nih.gov/pubmed/33238918
http://dx.doi.org/10.1186/s12884-020-03441-6
Descripción
Sumario:BACKGROUND: Hypertensive disorders of pregnancy (HDP) are associated with high maternal mortality in Ghana and globally. Evidence shows that there is poor availability of pregnancy-related point-of-care (POC) tests in Ghana’s primary healthcare (PHC) clinics (health centre or community-based health planning services facilities). Therefore, we employed geographic information systems to estimate the geographical distribution of and physical accessibility to HDP POC testing services in the Upper East Region (UER), Ghana. METHODS: We collected data on 100 out of 365 PHC clinics, public hospitals providing HDP testing, PHC clinic type, ownership, and availability of urine dipsticks and blood pressure (BP) devices. We also obtained the geo-located data of the PHC clinics and hospitals using the global positioning system. We employed ArcGIS 10.4 to measure the distance and travel time from the location of each PHC clinic without HDP POC testing services as well as from all locations of each district to the nearest hospital/clinic where the service is available. The travel time was estimated using an assumed motorised tricycle speed of 20 km/hour. We further calculated the spatial distribution of the hospitals/clinics providing HDP POC testing services using the spatial autocorrelation tool in ArcMap, and Stata version 14 for descriptive statistical analysis. RESULTS: Of the 100 participating PHC clinics, POC testing for HDP was available in 19% (14% health centres and 5% community-based health planning services compounds) in addition to the 10 hospitals use as referral points for the service. The findings indicated that the spatial pattern of the distribution of the health facilities providing HDP POC testing was random (z-score = -0.61; p = 0.54). About 17% of the PHC clinics without HDP POC testing service were located > 10 km to the nearest facility offering the service. The mean distance and travel time from PHC clinics without HDP POC testing to a health facility providing the service were 11.4 ± 9.9 km and 31.1 ± 29.2 min respectively. The results suggest that if every 19% of the 365 PHC clinics are offering HDP POC testing in addition to these 10 hospitals identified, then the estimated coverage (health facility-to-women in fertility age ratio) in the UER is 1: 3,869. CONCLUSIONS: There is poor physical accessibility to HDP POC testing services from PHC clinics without HDP POC testing in the UER. Mothers who obtain maternal healthcare in about 17% of the PHC clinics travel long distances (> 10 km) to access the service when needed. Hence, there is a need to improve the availability of HDP POC diagnostic tests in Ghana’s rural clinics.