Cargando…
The impact of summer vacation on children’s obesogenic behaviors and body mass index: a natural experiment
BACKGROUND: Children’s BMI gain accelerates during summer. The Structured Days Hypothesis posits that the lack of the school day during summer vacation negatively impacts children’s obesogenic behaviors (i.e., physical activity, screen time, diet, sleep). This natural experiment examined the impact...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7690133/ https://www.ncbi.nlm.nih.gov/pubmed/33243252 http://dx.doi.org/10.1186/s12966-020-01052-0 |
Sumario: | BACKGROUND: Children’s BMI gain accelerates during summer. The Structured Days Hypothesis posits that the lack of the school day during summer vacation negatively impacts children’s obesogenic behaviors (i.e., physical activity, screen time, diet, sleep). This natural experiment examined the impact of summer vacation on children’s obesogenic behaviors and body mass index (BMI). METHODS: Elementary-aged children (n = 285, 5-12 years, 48.7% male, 57.4% African American) attending a year-round (n = 97) and two match-paired traditional schools (n = 188) in the United States participated in this study. Rather than taking a long break from school during the summer like traditional schools, year-round schools take shorter and more frequent breaks from school. This difference in school calendars allowed for obesogenic behaviors to be collected during three conditions: Condition 1) all children attend school, Condition 2) year-round children attend school while traditional children were on summer vacation, and Condition 3) summer vacation for all children. Changes in BMI z-score were collected for the corresponding school years and summers. Multi-level mixed effects regressions estimated obesogenic behaviors and monthly zBMI changes. It was hypothesized that children would experience unhealthy changes in obesogenic behaviors when entering summer vacation because the absence of the school day (i.e., Condition 1 vs. 2 for traditional school children and 2 vs. 3 for year-round school children). RESULTS: From Condition 1 to 2 traditional school children experienced greater unhealthy changes in daily minutes sedentary (∆ = 24.2, 95CI = 10.2, 38.2), screen time minutes (∆ = 33.7, 95CI = 17.2, 50.3), sleep midpoint time (∆ = 73:43, 95CI = 65:33, 81:53), and sleep efficiency percentage (−∆ = 0.7, 95CI = -1.1, − 0.3) when compared to year-round school children. Alternatively, from Condition 2 to 3 year-round school children experienced greater unhealthy changes in daily minutes sedentary (∆ = 54.5, 95CI = 38.0, 70.9), light physical activity minutes (∆ = − 42.2, 95CI = -56.2, − 28.3) MVPA minutes (∆ = − 11.4, 95CI = -3.7, − 19.1), screen time minutes (∆ = 46.5, 95CI = 30.0, 63.0), and sleep midpoint time (∆ = 95:54, 95CI = 85:26, 106:22) when compared to traditional school children. Monthly zBMI gain accelerated during summer for traditional (∆ = 0.033 95CI = 0.019, 0.047) but not year-round school children (∆ = 0.004, 95CI = -0.014, 0.023). CONCLUSIONS: This study suggests that the lack of the school day during summer vacation negatively impacts sedentary behaviors, sleep timing, and screen time. Changes in sedentary behaviors, screen time, and sleep midpoint may contribute to accelerated summer BMI gain. Providing structured programming during summer vacation may positively impact these behaviors, and in turn, mitigate accelerated summer BMI gain. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03397940. Registered January 12th 2018. |
---|