Cargando…
Predicting Clinical Outcome in Acute Ischemic Stroke Using Parallel Multi-Parametric Feature Embedded Siamese Network
Stroke is the second leading cause of death and disability worldwide, with ischemic stroke as the most common type. The preferred diagnostic procedure at the acute stage is the acquisition of multi-parametric magnetic resonance imaging (MRI). This type of imaging not only detects and locates the str...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7690444/ https://www.ncbi.nlm.nih.gov/pubmed/33105609 http://dx.doi.org/10.3390/diagnostics10110858 |
Sumario: | Stroke is the second leading cause of death and disability worldwide, with ischemic stroke as the most common type. The preferred diagnostic procedure at the acute stage is the acquisition of multi-parametric magnetic resonance imaging (MRI). This type of imaging not only detects and locates the stroke lesion, but also provides the blood flow dynamics that helps clinicians in assessing the risks and benefits of reperfusion therapies. However, evaluating the outcome of these risky therapies beforehand is a complicated task due to the variability of lesion location, size, shape, and cerebral hemodynamics involved. Though the fully automated model for predicting treatment outcomes using multi-parametric imaging would be highly valuable in clinical settings, MRI datasets acquired at the acute stage are mostly scarce and suffer high class imbalance. In this paper, parallel multi-parametric feature embedded siamese network (PMFE-SN) is proposed that can learn with few samples and can handle skewness in multi-parametric MRI data. Moreover, five suitable evaluation metrics that are insensitive to imbalance are defined for this problem. The results show that PMFE-SN not only outperforms other state-of-the-art techniques in all these metrics but also can predict the class with a small number of samples, as well as the class with high number of samples. An accuracy of 0.67 on leave one cross out testing has been achieved with only two samples (minority class) for training and accuracy of 0.61 with the highest number of samples (majority class). In comparison, state-of-the-art using hand crafted features has 0 accuracy for minority class and 0.33 accuracy for majority class. |
---|