Cargando…

A Novel Bead-Based Immunoassay for the Measurement of Heat Shock Proteins 27 and 70

Heat shock proteins (HSPs) play an essential role in protecting proteins from denaturation and are implicated in diverse pathophysiological conditions like cardiovascular diseases, cancer, infections, and neurodegenerative diseases. Scientific evidence indicates that if HSP expression falls below a...

Descripción completa

Detalles Bibliográficos
Autores principales: Njemini, Rose, Verhaeghen, Katrijn, Mets, Tony, Weets, Ilse, Bautmans, Ivan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7690633/
https://www.ncbi.nlm.nih.gov/pubmed/33105839
http://dx.doi.org/10.3390/pathogens9110863
_version_ 1783614112699252736
author Njemini, Rose
Verhaeghen, Katrijn
Mets, Tony
Weets, Ilse
Bautmans, Ivan
author_facet Njemini, Rose
Verhaeghen, Katrijn
Mets, Tony
Weets, Ilse
Bautmans, Ivan
author_sort Njemini, Rose
collection PubMed
description Heat shock proteins (HSPs) play an essential role in protecting proteins from denaturation and are implicated in diverse pathophysiological conditions like cardiovascular diseases, cancer, infections, and neurodegenerative diseases. Scientific evidence indicates that if HSP expression falls below a certain level, cells become sensitive to oxidative damage that accelerates protein aggregation diseases. On the other hand, persistently enhanced levels of HSP can lead to inflammatory and oncogenic changes. To date, although techniques for measuring HSPs exist, these assays are limited for use in specific sample types or are time consuming. Therefore, in the present study, we developed a single-molecule assay digital ELISA technology (Single Molecule Array—SIMOA) for the measurement of HSPs, which is time effective and can be adapted to measure multiple analytes simultaneously from a single sample. This technique combines two distinct HSP-specific antibodies that recognize different epitopes on the HSP molecule. A recombinant human HSP protein was used as the standard material. The assay performance characteristics were evaluated by repeated testing of samples spiked with HSP peptide at different levels. The limit of detection was 0.16 and 2 ng/mL for HSP27 and HSP70, respectively. The inter- and intra-assay coefficients of variation were less than 20% in all tested conditions for both HSPs. The HSP levels assayed after serial dilution of samples portrayed dilutional linearity (on average 109%, R(2) = 0.998, p < 0.001, for HSP27 and 93%, R(2) = 0.994, p < 0.001, for HSP70). A high linear response was also demonstrated with admixtures of plasma exhibiting relatively very low and high levels of HSP70 (R(2) = 0.982, p < 0.001). Analyte spike recovery varied between 57% and 95%. Moreover, the relative HSP values obtained using Western blotting correlated significantly with HSP values obtained with the newly developed SIMOA assay (r = 0.815, p < 0.001 and r = 0.895, p < 0.001 for HSP70 and HSP27, respectively), indicating that our method is reliable. In conclusion, the assay demonstrates analytical performance for the accurate assessment of HSPs in various sample types and offers the advantage of a huge range of dilution linearity, indicating that samples with HSP concentration highly above the calibration range can be diluted into range without affecting the precision of the assay.
format Online
Article
Text
id pubmed-7690633
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-76906332020-11-27 A Novel Bead-Based Immunoassay for the Measurement of Heat Shock Proteins 27 and 70 Njemini, Rose Verhaeghen, Katrijn Mets, Tony Weets, Ilse Bautmans, Ivan Pathogens Article Heat shock proteins (HSPs) play an essential role in protecting proteins from denaturation and are implicated in diverse pathophysiological conditions like cardiovascular diseases, cancer, infections, and neurodegenerative diseases. Scientific evidence indicates that if HSP expression falls below a certain level, cells become sensitive to oxidative damage that accelerates protein aggregation diseases. On the other hand, persistently enhanced levels of HSP can lead to inflammatory and oncogenic changes. To date, although techniques for measuring HSPs exist, these assays are limited for use in specific sample types or are time consuming. Therefore, in the present study, we developed a single-molecule assay digital ELISA technology (Single Molecule Array—SIMOA) for the measurement of HSPs, which is time effective and can be adapted to measure multiple analytes simultaneously from a single sample. This technique combines two distinct HSP-specific antibodies that recognize different epitopes on the HSP molecule. A recombinant human HSP protein was used as the standard material. The assay performance characteristics were evaluated by repeated testing of samples spiked with HSP peptide at different levels. The limit of detection was 0.16 and 2 ng/mL for HSP27 and HSP70, respectively. The inter- and intra-assay coefficients of variation were less than 20% in all tested conditions for both HSPs. The HSP levels assayed after serial dilution of samples portrayed dilutional linearity (on average 109%, R(2) = 0.998, p < 0.001, for HSP27 and 93%, R(2) = 0.994, p < 0.001, for HSP70). A high linear response was also demonstrated with admixtures of plasma exhibiting relatively very low and high levels of HSP70 (R(2) = 0.982, p < 0.001). Analyte spike recovery varied between 57% and 95%. Moreover, the relative HSP values obtained using Western blotting correlated significantly with HSP values obtained with the newly developed SIMOA assay (r = 0.815, p < 0.001 and r = 0.895, p < 0.001 for HSP70 and HSP27, respectively), indicating that our method is reliable. In conclusion, the assay demonstrates analytical performance for the accurate assessment of HSPs in various sample types and offers the advantage of a huge range of dilution linearity, indicating that samples with HSP concentration highly above the calibration range can be diluted into range without affecting the precision of the assay. MDPI 2020-10-22 /pmc/articles/PMC7690633/ /pubmed/33105839 http://dx.doi.org/10.3390/pathogens9110863 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Njemini, Rose
Verhaeghen, Katrijn
Mets, Tony
Weets, Ilse
Bautmans, Ivan
A Novel Bead-Based Immunoassay for the Measurement of Heat Shock Proteins 27 and 70
title A Novel Bead-Based Immunoassay for the Measurement of Heat Shock Proteins 27 and 70
title_full A Novel Bead-Based Immunoassay for the Measurement of Heat Shock Proteins 27 and 70
title_fullStr A Novel Bead-Based Immunoassay for the Measurement of Heat Shock Proteins 27 and 70
title_full_unstemmed A Novel Bead-Based Immunoassay for the Measurement of Heat Shock Proteins 27 and 70
title_short A Novel Bead-Based Immunoassay for the Measurement of Heat Shock Proteins 27 and 70
title_sort novel bead-based immunoassay for the measurement of heat shock proteins 27 and 70
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7690633/
https://www.ncbi.nlm.nih.gov/pubmed/33105839
http://dx.doi.org/10.3390/pathogens9110863
work_keys_str_mv AT njeminirose anovelbeadbasedimmunoassayforthemeasurementofheatshockproteins27and70
AT verhaeghenkatrijn anovelbeadbasedimmunoassayforthemeasurementofheatshockproteins27and70
AT metstony anovelbeadbasedimmunoassayforthemeasurementofheatshockproteins27and70
AT weetsilse anovelbeadbasedimmunoassayforthemeasurementofheatshockproteins27and70
AT bautmansivan anovelbeadbasedimmunoassayforthemeasurementofheatshockproteins27and70
AT njeminirose novelbeadbasedimmunoassayforthemeasurementofheatshockproteins27and70
AT verhaeghenkatrijn novelbeadbasedimmunoassayforthemeasurementofheatshockproteins27and70
AT metstony novelbeadbasedimmunoassayforthemeasurementofheatshockproteins27and70
AT weetsilse novelbeadbasedimmunoassayforthemeasurementofheatshockproteins27and70
AT bautmansivan novelbeadbasedimmunoassayforthemeasurementofheatshockproteins27and70