Cargando…
Identification of COVID-19 Clinical Phenotypes by Principal Component Analysis-Based Cluster Analysis
Background: COVID-19 has been quickly spreading, making it a serious public health threat. It is important to identify phenotypes to predict the severity of disease and design an individualized treatment. Methods: We collected data from 213 COVID-19 patients in Wuhan Pulmonary Hospital from January...
Autores principales: | Ye, Wenjing, Lu, Weiwei, Tang, Yanping, Chen, Guoxi, Li, Xiaopan, Ji, Chen, Hou, Min, Zeng, Guangwang, Lan, Xing, Wang, Yaling, Deng, Xiaoqin, Cai, Yuyang, Huang, Hai, Yang, Ling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7690648/ https://www.ncbi.nlm.nih.gov/pubmed/33282887 http://dx.doi.org/10.3389/fmed.2020.570614 |
Ejemplares similares
-
Clinical characteristics of pneumonia patients of long course of illness infected with SARS-CoV-2
por: Chunli, Wang, et al.
Publicado: (2022) -
Dynamic changes of D-dimer and neutrophil-lymphocyte count ratio as prognostic biomarkers in COVID-19
por: Ye, Wenjing, et al.
Publicado: (2020) -
The relationship between oxygen therapy, drug therapy, and COVID-19 mortality
por: Yang, Ling, et al.
Publicado: (2022) -
COPD phenotype description using principal components analysis
por: Roy, Kay, et al.
Publicado: (2009) -
Long-term Changes in the Premature Death Rate in Lung Cancer in a Developed Region of China: Population-based Study
por: Ye, Wenjing, et al.
Publicado: (2022)