Cargando…
The Effect of Nitrogen Input on Chemical Profile and Bioactive Properties of Green- and Red-Colored Basil Cultivars
In the present study, three red-colored (Dark Opal, Basilico Rosso, and Red Basil) and one green-colored landrace (Mitikas) of basil (Ocimum basilicum L.) were grown under four nitrogen regimes, namely Control (no fertilizer added), 200 ppm, 400 ppm, and 600 ppm of nitrogen (N). Fresh yield varied d...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7690662/ https://www.ncbi.nlm.nih.gov/pubmed/33114065 http://dx.doi.org/10.3390/antiox9111036 |
_version_ | 1783614119251804160 |
---|---|
author | Cruz, Luís R. O. Fernandes, Ângela Di Gioia, Francesco Petropoulos, Spyridon A. Polyzos, Nikolaos Dias, Maria Inês Pinela, José Kostić, Marina Soković, Marina D. Ferreira, Isabel C. F. R. Barros, Lillian |
author_facet | Cruz, Luís R. O. Fernandes, Ângela Di Gioia, Francesco Petropoulos, Spyridon A. Polyzos, Nikolaos Dias, Maria Inês Pinela, José Kostić, Marina Soković, Marina D. Ferreira, Isabel C. F. R. Barros, Lillian |
author_sort | Cruz, Luís R. O. |
collection | PubMed |
description | In the present study, three red-colored (Dark Opal, Basilico Rosso, and Red Basil) and one green-colored landrace (Mitikas) of basil (Ocimum basilicum L.) were grown under four nitrogen regimes, namely Control (no fertilizer added), 200 ppm, 400 ppm, and 600 ppm of nitrogen (N). Fresh yield varied depending on N input following a quadratic function in all four genotypes, and green basil performed better compared to the red cultivars. A significant interaction of genotype × N input was recorded for most of the chemical parameters measured. Tocopherols contents of leaves were consistently higher in plants that received 200 ppm of N and lower in those receiving 600 ppm of N, especially in Dark Opal and Red Basil cultivars. Polyunsaturated fatty acids (PUFA) were the major category of fatty acids and Red Basil had the lowest ratio of omega-6/omega 3 (0.29) and thus the best fatty acid profile. Polyphenols content was the highest in Red Basil and Dark Opal (25 mg/g of extract on average) and the lowest in Mitikas and decreased with increasing N input. Similarly, antioxidant activity was the highest in Dark Opal and Red Basil fertigated with 200 ppm of N, whereas all the leaf extracts tested had good antibacterial and antifungal activity. In conclusion, basil chemical and bioactive profile was significantly influenced by both genotype and N input. Red-colored basil, although less productive, had the best chemical profile, and moderate levels of N input may provide the best compromise between yield, nutritional value, and bioactivity for the species. |
format | Online Article Text |
id | pubmed-7690662 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76906622020-11-27 The Effect of Nitrogen Input on Chemical Profile and Bioactive Properties of Green- and Red-Colored Basil Cultivars Cruz, Luís R. O. Fernandes, Ângela Di Gioia, Francesco Petropoulos, Spyridon A. Polyzos, Nikolaos Dias, Maria Inês Pinela, José Kostić, Marina Soković, Marina D. Ferreira, Isabel C. F. R. Barros, Lillian Antioxidants (Basel) Article In the present study, three red-colored (Dark Opal, Basilico Rosso, and Red Basil) and one green-colored landrace (Mitikas) of basil (Ocimum basilicum L.) were grown under four nitrogen regimes, namely Control (no fertilizer added), 200 ppm, 400 ppm, and 600 ppm of nitrogen (N). Fresh yield varied depending on N input following a quadratic function in all four genotypes, and green basil performed better compared to the red cultivars. A significant interaction of genotype × N input was recorded for most of the chemical parameters measured. Tocopherols contents of leaves were consistently higher in plants that received 200 ppm of N and lower in those receiving 600 ppm of N, especially in Dark Opal and Red Basil cultivars. Polyunsaturated fatty acids (PUFA) were the major category of fatty acids and Red Basil had the lowest ratio of omega-6/omega 3 (0.29) and thus the best fatty acid profile. Polyphenols content was the highest in Red Basil and Dark Opal (25 mg/g of extract on average) and the lowest in Mitikas and decreased with increasing N input. Similarly, antioxidant activity was the highest in Dark Opal and Red Basil fertigated with 200 ppm of N, whereas all the leaf extracts tested had good antibacterial and antifungal activity. In conclusion, basil chemical and bioactive profile was significantly influenced by both genotype and N input. Red-colored basil, although less productive, had the best chemical profile, and moderate levels of N input may provide the best compromise between yield, nutritional value, and bioactivity for the species. MDPI 2020-10-23 /pmc/articles/PMC7690662/ /pubmed/33114065 http://dx.doi.org/10.3390/antiox9111036 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Cruz, Luís R. O. Fernandes, Ângela Di Gioia, Francesco Petropoulos, Spyridon A. Polyzos, Nikolaos Dias, Maria Inês Pinela, José Kostić, Marina Soković, Marina D. Ferreira, Isabel C. F. R. Barros, Lillian The Effect of Nitrogen Input on Chemical Profile and Bioactive Properties of Green- and Red-Colored Basil Cultivars |
title | The Effect of Nitrogen Input on Chemical Profile and Bioactive Properties of Green- and Red-Colored Basil Cultivars |
title_full | The Effect of Nitrogen Input on Chemical Profile and Bioactive Properties of Green- and Red-Colored Basil Cultivars |
title_fullStr | The Effect of Nitrogen Input on Chemical Profile and Bioactive Properties of Green- and Red-Colored Basil Cultivars |
title_full_unstemmed | The Effect of Nitrogen Input on Chemical Profile and Bioactive Properties of Green- and Red-Colored Basil Cultivars |
title_short | The Effect of Nitrogen Input on Chemical Profile and Bioactive Properties of Green- and Red-Colored Basil Cultivars |
title_sort | effect of nitrogen input on chemical profile and bioactive properties of green- and red-colored basil cultivars |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7690662/ https://www.ncbi.nlm.nih.gov/pubmed/33114065 http://dx.doi.org/10.3390/antiox9111036 |
work_keys_str_mv | AT cruzluisro theeffectofnitrogeninputonchemicalprofileandbioactivepropertiesofgreenandredcoloredbasilcultivars AT fernandesangela theeffectofnitrogeninputonchemicalprofileandbioactivepropertiesofgreenandredcoloredbasilcultivars AT digioiafrancesco theeffectofnitrogeninputonchemicalprofileandbioactivepropertiesofgreenandredcoloredbasilcultivars AT petropoulosspyridona theeffectofnitrogeninputonchemicalprofileandbioactivepropertiesofgreenandredcoloredbasilcultivars AT polyzosnikolaos theeffectofnitrogeninputonchemicalprofileandbioactivepropertiesofgreenandredcoloredbasilcultivars AT diasmariaines theeffectofnitrogeninputonchemicalprofileandbioactivepropertiesofgreenandredcoloredbasilcultivars AT pinelajose theeffectofnitrogeninputonchemicalprofileandbioactivepropertiesofgreenandredcoloredbasilcultivars AT kosticmarina theeffectofnitrogeninputonchemicalprofileandbioactivepropertiesofgreenandredcoloredbasilcultivars AT sokovicmarinad theeffectofnitrogeninputonchemicalprofileandbioactivepropertiesofgreenandredcoloredbasilcultivars AT ferreiraisabelcfr theeffectofnitrogeninputonchemicalprofileandbioactivepropertiesofgreenandredcoloredbasilcultivars AT barroslillian theeffectofnitrogeninputonchemicalprofileandbioactivepropertiesofgreenandredcoloredbasilcultivars AT cruzluisro effectofnitrogeninputonchemicalprofileandbioactivepropertiesofgreenandredcoloredbasilcultivars AT fernandesangela effectofnitrogeninputonchemicalprofileandbioactivepropertiesofgreenandredcoloredbasilcultivars AT digioiafrancesco effectofnitrogeninputonchemicalprofileandbioactivepropertiesofgreenandredcoloredbasilcultivars AT petropoulosspyridona effectofnitrogeninputonchemicalprofileandbioactivepropertiesofgreenandredcoloredbasilcultivars AT polyzosnikolaos effectofnitrogeninputonchemicalprofileandbioactivepropertiesofgreenandredcoloredbasilcultivars AT diasmariaines effectofnitrogeninputonchemicalprofileandbioactivepropertiesofgreenandredcoloredbasilcultivars AT pinelajose effectofnitrogeninputonchemicalprofileandbioactivepropertiesofgreenandredcoloredbasilcultivars AT kosticmarina effectofnitrogeninputonchemicalprofileandbioactivepropertiesofgreenandredcoloredbasilcultivars AT sokovicmarinad effectofnitrogeninputonchemicalprofileandbioactivepropertiesofgreenandredcoloredbasilcultivars AT ferreiraisabelcfr effectofnitrogeninputonchemicalprofileandbioactivepropertiesofgreenandredcoloredbasilcultivars AT barroslillian effectofnitrogeninputonchemicalprofileandbioactivepropertiesofgreenandredcoloredbasilcultivars |