Cargando…
Synthesis of Oxide Iron Nanoparticles Using Laser Ablation for Possible Hyperthermia Applications
In this work, iron oxide nanoparticles produced using the laser ablation technique were studied in order to determine the characteristics of these nanoparticles as a function of the laser energy for the possible application in magnetic hyperthermia. Nanoparticles were obtained by varying the power o...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7690669/ https://www.ncbi.nlm.nih.gov/pubmed/33113964 http://dx.doi.org/10.3390/nano10112099 |
_version_ | 1783614120871854080 |
---|---|
author | Rivera-Chaverra, María J. Restrepo-Parra, Elisabeth Acosta-Medina, Carlos D. Mello, Alexandre. Ospina, Rogelio. |
author_facet | Rivera-Chaverra, María J. Restrepo-Parra, Elisabeth Acosta-Medina, Carlos D. Mello, Alexandre. Ospina, Rogelio. |
author_sort | Rivera-Chaverra, María J. |
collection | PubMed |
description | In this work, iron oxide nanoparticles produced using the laser ablation technique were studied in order to determine the characteristics of these nanoparticles as a function of the laser energy for the possible application in magnetic hyperthermia. Nanoparticles were obtained by varying the power of the laser considering values of 90, 173, 279 and 370 mJ. The morphology of these nanoparticles was determined using the dynamic light scattering (DLS) and scattering transmission electron microscopy (STEM) techniques, confirming that the size of the particles was in the order of nanometers. A great influence of the laser power on the particle size was also observed, caused by the competition between the energy and the temperature. The composition was determined by X-ray diffraction and Raman spectroscopy, showing the presence of magnetite, maghemite and hematite. The hyperthermia measurements showed that the temperature rise of the iron oxide nanoparticles was not greatly influenced by the energy change, the heating capacity of magnetic NPs is quantified by the specific absorption rate (SAR), that tends to decrease with increasing energy, which indicates a dependence of these values on the nanoparticles concentration. |
format | Online Article Text |
id | pubmed-7690669 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76906692020-11-27 Synthesis of Oxide Iron Nanoparticles Using Laser Ablation for Possible Hyperthermia Applications Rivera-Chaverra, María J. Restrepo-Parra, Elisabeth Acosta-Medina, Carlos D. Mello, Alexandre. Ospina, Rogelio. Nanomaterials (Basel) Article In this work, iron oxide nanoparticles produced using the laser ablation technique were studied in order to determine the characteristics of these nanoparticles as a function of the laser energy for the possible application in magnetic hyperthermia. Nanoparticles were obtained by varying the power of the laser considering values of 90, 173, 279 and 370 mJ. The morphology of these nanoparticles was determined using the dynamic light scattering (DLS) and scattering transmission electron microscopy (STEM) techniques, confirming that the size of the particles was in the order of nanometers. A great influence of the laser power on the particle size was also observed, caused by the competition between the energy and the temperature. The composition was determined by X-ray diffraction and Raman spectroscopy, showing the presence of magnetite, maghemite and hematite. The hyperthermia measurements showed that the temperature rise of the iron oxide nanoparticles was not greatly influenced by the energy change, the heating capacity of magnetic NPs is quantified by the specific absorption rate (SAR), that tends to decrease with increasing energy, which indicates a dependence of these values on the nanoparticles concentration. MDPI 2020-10-23 /pmc/articles/PMC7690669/ /pubmed/33113964 http://dx.doi.org/10.3390/nano10112099 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rivera-Chaverra, María J. Restrepo-Parra, Elisabeth Acosta-Medina, Carlos D. Mello, Alexandre. Ospina, Rogelio. Synthesis of Oxide Iron Nanoparticles Using Laser Ablation for Possible Hyperthermia Applications |
title | Synthesis of Oxide Iron Nanoparticles Using Laser Ablation for Possible Hyperthermia Applications |
title_full | Synthesis of Oxide Iron Nanoparticles Using Laser Ablation for Possible Hyperthermia Applications |
title_fullStr | Synthesis of Oxide Iron Nanoparticles Using Laser Ablation for Possible Hyperthermia Applications |
title_full_unstemmed | Synthesis of Oxide Iron Nanoparticles Using Laser Ablation for Possible Hyperthermia Applications |
title_short | Synthesis of Oxide Iron Nanoparticles Using Laser Ablation for Possible Hyperthermia Applications |
title_sort | synthesis of oxide iron nanoparticles using laser ablation for possible hyperthermia applications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7690669/ https://www.ncbi.nlm.nih.gov/pubmed/33113964 http://dx.doi.org/10.3390/nano10112099 |
work_keys_str_mv | AT riverachaverramariaj synthesisofoxideironnanoparticlesusinglaserablationforpossiblehyperthermiaapplications AT restrepoparraelisabeth synthesisofoxideironnanoparticlesusinglaserablationforpossiblehyperthermiaapplications AT acostamedinacarlosd synthesisofoxideironnanoparticlesusinglaserablationforpossiblehyperthermiaapplications AT melloalexandre synthesisofoxideironnanoparticlesusinglaserablationforpossiblehyperthermiaapplications AT ospinarogelio synthesisofoxideironnanoparticlesusinglaserablationforpossiblehyperthermiaapplications |