Cargando…
Twitter Discussions and Emotions About the COVID-19 Pandemic: Machine Learning Approach
BACKGROUND: It is important to measure the public response to the COVID-19 pandemic. Twitter is an important data source for infodemiology studies involving public response monitoring. OBJECTIVE: The objective of this study is to examine COVID-19–related discussions, concerns, and sentiments using t...
Autores principales: | Xue, Jia, Chen, Junxiang, Hu, Ran, Chen, Chen, Zheng, Chengda, Su, Yue, Zhu, Tingshao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7690968/ https://www.ncbi.nlm.nih.gov/pubmed/33119535 http://dx.doi.org/10.2196/20550 |
Ejemplares similares
-
Public discourse and sentiment during the COVID 19 pandemic: Using Latent Dirichlet Allocation for topic modeling on Twitter
por: Xue, Jia, et al.
Publicado: (2020) -
The Hidden Pandemic of Family Violence During COVID-19: Unsupervised Learning of Tweets
por: Xue, Jia, et al.
Publicado: (2020) -
Examining the Impact of COVID-19 Lockdown in Wuhan and Lombardy: A Psycholinguistic Analysis on Weibo and Twitter
por: Su, Yue, et al.
Publicado: (2020) -
Public Opinions and Concerns Regarding the Canadian Prime Minister’s Daily COVID-19 Briefing: Longitudinal Study of YouTube Comments Using Machine Learning Techniques
por: Zheng, Chengda, et al.
Publicado: (2021) -
Perceptions and Discussions of Snus on Twitter: Observational Study
por: Chen, Jiarui, et al.
Publicado: (2022)