Cargando…

Coevolutionary forces shaping the fitness of SARS-CoV-2 spike glycoprotein against human receptor ACE2

The current global health problem caused by SARS-CoV-2 has challenged the scientific community in various ways. Therefore, worldwide several scientific groups are exploring SARS-CoV-2 from different aspects including its origin, spread, severe infectivity, and also to find a cure. It is now well kno...

Descripción completa

Detalles Bibliográficos
Autores principales: Priya, Prerna, Shanker, Asheesh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7691136/
https://www.ncbi.nlm.nih.gov/pubmed/33249264
http://dx.doi.org/10.1016/j.meegid.2020.104646
Descripción
Sumario:The current global health problem caused by SARS-CoV-2 has challenged the scientific community in various ways. Therefore, worldwide several scientific groups are exploring SARS-CoV-2 from different aspects including its origin, spread, severe infectivity, and also to find a cure. It is now well known that spike glycoprotein helps SARS-CoV-2 to enter inside the human host through a cellular receptor ACE2. However, the role of coevolutionary forces that makes SARS-CoV-2 spike glycoprotein more fit towards its human host remains unexplored. Therefore, in present bioinformatics study we identify coevolving amino acids in spike glycoprotein. Additionally, the effects of coevolution on the stability of the spike glycoprotein as well as its binding with receptor ACE2 were predicted. The results clearly indicate that coevolutionary forces play a pivotal role in increasing the fitness of spike glycoprotein against ACE2.