Cargando…
Enhanced production of cordycepin in Ophiocordyceps sinensis using growth supplements under submerged conditions
Cordycepin is a crucial bioactive compound produced by the fungus Cordyceps spp. Its therapeutic potential has been recognized for a wide range of biological properties such as anticancer, anti-diabetic, antidepressant, antioxidant, immunomodulation, etc. Moreover, its human random clinical trials d...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7691154/ https://www.ncbi.nlm.nih.gov/pubmed/33294405 http://dx.doi.org/10.1016/j.btre.2020.e00557 |
_version_ | 1783614228134887424 |
---|---|
author | Kaushik, Vikas Singh, Amanvir Arya, Aditi Sindhu, Sangeeta Chahal Sindhu, Anil Singh, Ajay |
author_facet | Kaushik, Vikas Singh, Amanvir Arya, Aditi Sindhu, Sangeeta Chahal Sindhu, Anil Singh, Ajay |
author_sort | Kaushik, Vikas |
collection | PubMed |
description | Cordycepin is a crucial bioactive compound produced by the fungus Cordyceps spp. Its therapeutic potential has been recognized for a wide range of biological properties such as anticancer, anti-diabetic, antidepressant, antioxidant, immunomodulation, etc. Moreover, its human random clinical trials depicted a promising anti-inflammatory activity that reduced the airway inflammation remarkably in asthmatic patients. But its overexploitation and low production of cordycepin in naturally growing biomass are insufficient to meet its existing market demand for its therapeutic use. Therefore, strategies for enhancement of cordycepin production in Cordyceps spp. are warranted. However, specifically, wild type Ophiocordyceps sinensis possesses a very low content of cordycepin and has restricted growth in natural mycelial biomass. To overcome these limitations, this study attempted to enhance cordycepin production in its mycelial biomass in vitro under submerged conditions by adding various growth supplements. The effect of these growth supplements was evaluated by reversed-phase high-performance liquid chromatography (RP-HPLC) which demonstrated that among nucleosides- hypoxanthine and adenosine; amino acids-glycine and glutamine; plant hormones- 1-naphthaleneacetic acid (NAA) and 3-indoleacetic acid (IAA); vitamin-thiamine (B(1)) from each group of growth supplements yielded a higher amount of cordycepin with 466.48 ± 3.88, 380.23 ± 1.78, 434.97 ± 2.32, 269.78 ± 2.92, 227.61 ± 2.34, 226.02 ± 1.69 and 185.26 ± 2.35 mg/L respectively as compared to control with 13.66 ± 0.64 mg/L. Further, at the transcriptional level, quantitative real time-polymerase chain reaction (qRT-PCR) analysis of genes associated with metabolism and cordycepin biosynthesis depicted significant upregulation of major downstream genes- NT5E, RNR, purA, and ADEK which corroborated well with RP-HPLC analysis. Taken together, the present study identified growth supplements as potential precursors to activate the cordycepin biosynthesis pathway leading to improved cordycepin production in O. sinensis. |
format | Online Article Text |
id | pubmed-7691154 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-76911542020-12-07 Enhanced production of cordycepin in Ophiocordyceps sinensis using growth supplements under submerged conditions Kaushik, Vikas Singh, Amanvir Arya, Aditi Sindhu, Sangeeta Chahal Sindhu, Anil Singh, Ajay Biotechnol Rep (Amst) Research Article Cordycepin is a crucial bioactive compound produced by the fungus Cordyceps spp. Its therapeutic potential has been recognized for a wide range of biological properties such as anticancer, anti-diabetic, antidepressant, antioxidant, immunomodulation, etc. Moreover, its human random clinical trials depicted a promising anti-inflammatory activity that reduced the airway inflammation remarkably in asthmatic patients. But its overexploitation and low production of cordycepin in naturally growing biomass are insufficient to meet its existing market demand for its therapeutic use. Therefore, strategies for enhancement of cordycepin production in Cordyceps spp. are warranted. However, specifically, wild type Ophiocordyceps sinensis possesses a very low content of cordycepin and has restricted growth in natural mycelial biomass. To overcome these limitations, this study attempted to enhance cordycepin production in its mycelial biomass in vitro under submerged conditions by adding various growth supplements. The effect of these growth supplements was evaluated by reversed-phase high-performance liquid chromatography (RP-HPLC) which demonstrated that among nucleosides- hypoxanthine and adenosine; amino acids-glycine and glutamine; plant hormones- 1-naphthaleneacetic acid (NAA) and 3-indoleacetic acid (IAA); vitamin-thiamine (B(1)) from each group of growth supplements yielded a higher amount of cordycepin with 466.48 ± 3.88, 380.23 ± 1.78, 434.97 ± 2.32, 269.78 ± 2.92, 227.61 ± 2.34, 226.02 ± 1.69 and 185.26 ± 2.35 mg/L respectively as compared to control with 13.66 ± 0.64 mg/L. Further, at the transcriptional level, quantitative real time-polymerase chain reaction (qRT-PCR) analysis of genes associated with metabolism and cordycepin biosynthesis depicted significant upregulation of major downstream genes- NT5E, RNR, purA, and ADEK which corroborated well with RP-HPLC analysis. Taken together, the present study identified growth supplements as potential precursors to activate the cordycepin biosynthesis pathway leading to improved cordycepin production in O. sinensis. Elsevier 2020-11-10 /pmc/articles/PMC7691154/ /pubmed/33294405 http://dx.doi.org/10.1016/j.btre.2020.e00557 Text en © 2020 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Kaushik, Vikas Singh, Amanvir Arya, Aditi Sindhu, Sangeeta Chahal Sindhu, Anil Singh, Ajay Enhanced production of cordycepin in Ophiocordyceps sinensis using growth supplements under submerged conditions |
title | Enhanced production of cordycepin in Ophiocordyceps sinensis using growth supplements under submerged conditions |
title_full | Enhanced production of cordycepin in Ophiocordyceps sinensis using growth supplements under submerged conditions |
title_fullStr | Enhanced production of cordycepin in Ophiocordyceps sinensis using growth supplements under submerged conditions |
title_full_unstemmed | Enhanced production of cordycepin in Ophiocordyceps sinensis using growth supplements under submerged conditions |
title_short | Enhanced production of cordycepin in Ophiocordyceps sinensis using growth supplements under submerged conditions |
title_sort | enhanced production of cordycepin in ophiocordyceps sinensis using growth supplements under submerged conditions |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7691154/ https://www.ncbi.nlm.nih.gov/pubmed/33294405 http://dx.doi.org/10.1016/j.btre.2020.e00557 |
work_keys_str_mv | AT kaushikvikas enhancedproductionofcordycepininophiocordycepssinensisusinggrowthsupplementsundersubmergedconditions AT singhamanvir enhancedproductionofcordycepininophiocordycepssinensisusinggrowthsupplementsundersubmergedconditions AT aryaaditi enhancedproductionofcordycepininophiocordycepssinensisusinggrowthsupplementsundersubmergedconditions AT sindhusangeetachahal enhancedproductionofcordycepininophiocordycepssinensisusinggrowthsupplementsundersubmergedconditions AT sindhuanil enhancedproductionofcordycepininophiocordycepssinensisusinggrowthsupplementsundersubmergedconditions AT singhajay enhancedproductionofcordycepininophiocordycepssinensisusinggrowthsupplementsundersubmergedconditions |