Cargando…

Incorporation of amoxicillin-loaded microspheres in mineral trioxide aggregate cement: an in vitro study

OBJECTIVES: In this study, we investigated the potential of amoxicillin-loaded polymeric microspheres to be delivered to tooth root infection sites via a bioactive reparative cement. MATERIALS AND METHODS: Amoxicillin-loaded microspheres were synthesized by a spray-dray method and incorporated at 2....

Descripción completa

Detalles Bibliográficos
Autores principales: Bohns, Fábio Rocha, Leitune, Vicente Castelo Branco, Garcia, Isadora Martini, Genari, Bruna, Dornelles, Nélio Bairros, Guterres, Silvia Stanisçuaski, Ogliari, Fabrício Aulo, de Melo, Mary Anne Sampaio, Collares, Fabrício Mezzomo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Academy of Conservative Dentistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7691264/
https://www.ncbi.nlm.nih.gov/pubmed/33294415
http://dx.doi.org/10.5395/rde.2020.45.e50
Descripción
Sumario:OBJECTIVES: In this study, we investigated the potential of amoxicillin-loaded polymeric microspheres to be delivered to tooth root infection sites via a bioactive reparative cement. MATERIALS AND METHODS: Amoxicillin-loaded microspheres were synthesized by a spray-dray method and incorporated at 2.5% and 5% into a mineral trioxide aggregate cement clinically used to induce a mineralized barrier at the root tip of young permanent teeth with incomplete root development and necrotic pulp. The formulations were modified in liquid:powder ratios and in composition by the microspheres. The optimized formulations were evaluated in vitro for physical and mechanical eligibility. The morphology of microspheres was observed under scanning electron microscopy. RESULTS: The optimized cement formulation containing microspheres at 5% exhibited a delayed-release response and maintained its fundamental functional properties. When mixed with amoxicillin-loaded microspheres, the setting times of both test materials significantly increased. The diametral tensile strength of cement containing microspheres at 5% was similar to control. However, phytic acid had no effect on this outcome (p > 0.05). When mixed with modified liquid:powder ratio, the setting time was significantly longer than that original liquid:powder ratio (p < 0.05). CONCLUSIONS: Lack of optimal concentrations of antibiotics at anatomical sites of the dental tissues is a hallmark of recurrent endodontic infections. Therefore, targeting the controlled release of broad-spectrum antibiotics may improve the therapeutic outcomes of current treatments. Overall, these results indicate that the carry of amoxicillin by microspheres could provide an alternative strategy for the local delivery of antibiotics for the management of tooth infections.