Cargando…

Developing benthic monitoring programmes to support precise and representative status assessments: a case study from the Baltic Sea

Benthic habitats and communities are key components of the marine ecosystem. Securing their functioning is a central aim in marine environmental management, where monitoring data provide the base for assessing the state of marine ecosystems. In the Baltic Sea, a > 50-year-long tradition of zooben...

Descripción completa

Detalles Bibliográficos
Autores principales: Nygård, Henrik, Lindegarth, Mats, Darr, Alexander, Dinesen, Grete E., Eigaard, Ole R., Lips, Inga
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7691314/
https://www.ncbi.nlm.nih.gov/pubmed/33244647
http://dx.doi.org/10.1007/s10661-020-08764-7
Descripción
Sumario:Benthic habitats and communities are key components of the marine ecosystem. Securing their functioning is a central aim in marine environmental management, where monitoring data provide the base for assessing the state of marine ecosystems. In the Baltic Sea, a > 50-year-long tradition of zoobenthic monitoring exists. However, the monitoring programmes were designed prior to the current policies, primarily to detect long-term trends at basin-scale and are thus not optimal to fulfil recent requirements such as area-based periodic status assessments. Here, we review the current monitoring programmes and assess the precision and representativity of the monitoring data in status assessments to identify routes for improvement. At present, the monitoring is focused on soft-bottoms, not accounting for all habitat types occurring in the Baltic Sea. Evaluating the sources of variance in the assessment data revealed that the component accounting for variability among stations forms the largest proportion of the uncertainty. Furthermore, it is shown that the precision of the status estimates can be improved, with the current number of samples. Reducing sampling effort per station, but sampling more stations, is the best option to improve precision in status assessments. Furthermore, by allocating the sampling stations more evenly in the sub-basins, a better representativity of the area can be achieved. However, emphasis on securing the long-term data series is needed if changes to the monitoring programmes are planned.