Cargando…
Machine learning issues and opportunities in ultrafast particle classification for label-free microflow cytometry
Machine learning offers promising solutions for high-throughput single-particle analysis in label-free imaging microflow cytomtery. However, the throughput of online operations such as cell sorting is often limited by the large computational cost of the image analysis while offline operations may re...
Autores principales: | Lugnan, Alessio, Gooskens, Emmanuel, Vatin, Jeremy, Dambre, Joni, Bienstman, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7691359/ https://www.ncbi.nlm.nih.gov/pubmed/33244129 http://dx.doi.org/10.1038/s41598-020-77765-w |
Ejemplares similares
-
Experimental results on nonlinear distortion compensation using photonic reservoir computing with a single set of weights for different wavelengths
por: Gooskens, Emmanuel, et al.
Publicado: (2023) -
Sheathless Microflow Cytometry Using Viscoelastic Fluids
por: Asghari, Mohammad, et al.
Publicado: (2017) -
Highly parallel simulation and optimization of photonic circuits in time and frequency domain based on the deep-learning framework PyTorch
por: Laporte, Floris, et al.
Publicado: (2019) -
A training algorithm for networks of high-variability reservoirs
por: Freiberger, Matthias, et al.
Publicado: (2020) -
Simulating self-learning in photorefractive optical reservoir computers
por: Laporte, Floris, et al.
Publicado: (2021)