Cargando…
Extensions of the External Validation for Checking Learned Model Interpretability and Generalizability
We discuss the validation of machine learning models, which is standard practice in determining model efficacy and generalizability. We argue that internal validation approaches, such as cross-validation and bootstrap, cannot guarantee the quality of a machine learning model due to potentially biase...
Autores principales: | Ho, Sung Yang, Phua, Kimberly, Wong, Limsoon, Bin Goh, Wilson Wen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7691387/ https://www.ncbi.nlm.nih.gov/pubmed/33294870 http://dx.doi.org/10.1016/j.patter.2020.100129 |
Ejemplares similares
-
Avoid Oversimplifications in Machine Learning: Going beyond the Class-Prediction Accuracy
por: Ho, Sung Yang, et al.
Publicado: (2020) -
The Birth of Bio-data Science: Trends, Expectations, and Applications
por: Goh, Wilson Wen Bin, et al.
Publicado: (2020) -
ProInfer: An interpretable protein inference tool leveraging on biological networks
por: Peng, Hui, et al.
Publicado: (2023) -
Predicting Sex From EEG: Validity and Generalizability of Deep-Learning-Based Interpretable Classifier
por: Bučková, Barbora, et al.
Publicado: (2020) -
Identifying and Overcoming Threats to Reproducibility, Replicability, Robustness, and Generalizability in Microbiome Research
por: Schloss, Patrick D.
Publicado: (2018)