Cargando…
Density-based clustering of static and dynamic functional MRI connectivity features obtained from subjects with cognitive impairment
Various machine-learning classification techniques have been employed previously to classify brain states in healthy and disease populations using functional magnetic resonance imaging (fMRI). These methods generally use supervised classifiers that are sensitive to outliers and require labeling of t...
Autores principales: | Rangaprakash, D., Odemuyiwa, Toluwanimi, Narayana Dutt, D., Deshpande, Gopikrishna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7691406/ https://www.ncbi.nlm.nih.gov/pubmed/33242116 http://dx.doi.org/10.1186/s40708-020-00120-2 |
Ejemplares similares
-
Estimated hemodynamic response function parameters obtained from resting state BOLD fMRI signals in subjects with autism spectrum disorder and matched healthy subjects
por: Yan, Wenjing, et al.
Publicado: (2018) -
Aberrant hemodynamic responses in autism: Implications for resting state fMRI functional connectivity studies
por: Yan, Wenjing, et al.
Publicado: (2018) -
Comparison of hemodynamic response functions obtained from resting-state functional MRI and invasive electrophysiological recordings in rats
por: Rangaprakash, D, et al.
Publicado: (2023) -
Parameterized hemodynamic response function data of healthy individuals obtained from resting-state functional MRI in a 7T MRI scanner
por: Rangaprakash, D., et al.
Publicado: (2018) -
Hemodynamic response function parameters obtained from resting-state functional MRI data in soldiers with trauma
por: Rangaprakash, D., et al.
Publicado: (2017)