Cargando…

Rapid morphological change in multiple cichlid ecotypes following the damming of a major clearwater river in Brazil

While anthropogenic disturbances can have damaging effects on biodiversity, they also offer an opportunity to understand how species adapt to new environments and may even provide insights into the earliest stages of evolutionary diversification. With these topics in mind, we explored the morphologi...

Descripción completa

Detalles Bibliográficos
Autores principales: Gilbert, Michelle C., Akama, Alberto, Fernandes, Cristina Cox, Albertson, R. Craig
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7691474/
https://www.ncbi.nlm.nih.gov/pubmed/33294021
http://dx.doi.org/10.1111/eva.13080
Descripción
Sumario:While anthropogenic disturbances can have damaging effects on biodiversity, they also offer an opportunity to understand how species adapt to new environments and may even provide insights into the earliest stages of evolutionary diversification. With these topics in mind, we explored the morphological changes that have occurred across several cichlid species following the damming of the Tocantins River, Brazil. The Tocantins was once a large (2,450 km), contiguous river system; however, upon closure of the Tucuruí Hydroelectric Dam in 1984, a large (~2,850 km(2)), permanent reservoir was established. We used geometric morphometrics to evaluate changes in native cichlids, comparing historical museum specimens collected from the Tocantins to contemporary specimens collected from the Tucuruí reservoir. Six species across five genera were included to represent distinct ecomorphs, from large piscivores to relatively small opportunistic omnivores. Notably, statistically significant changes in shape and morphological disparity were observed in all species. Moreover, the documented changes tended to be associated with functionally relevant aspects of anatomy, including head, fin, and body shape. Our data offer insights into the ways cichlids have responded, morphologically, to a novel lake environment and provide a robust foundation for exploring the mechanisms through which these changes have occurred.