Cargando…
Application of multi-omics technology for the elucidation of anti-pneumococcal activity of 3-acyl-2-phenylamino-1,4-dihydroquinolin-4-one (APDQ) derivative against Streptococcus pneumoniae
Streptococcus pneumoniae is one of Gram-positive pathogen that causes invasive pneumococcal disease. Nowadays, many S. pneumoniae strains are resistant to commonly used antibiotics such as β-lactams and macrolides. 3-Acyl-2-phenylamino-1,4-dihydroquinolin-4-one (APDQ) derivatives are known as novel...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7691496/ https://www.ncbi.nlm.nih.gov/pubmed/33244098 http://dx.doi.org/10.1038/s41598-020-77694-8 |
Sumario: | Streptococcus pneumoniae is one of Gram-positive pathogen that causes invasive pneumococcal disease. Nowadays, many S. pneumoniae strains are resistant to commonly used antibiotics such as β-lactams and macrolides. 3-Acyl-2-phenylamino-1,4-dihydroquinolin-4-one (APDQ) derivatives are known as novel chemicals having anti-pneumococcal activity against S. pneumoniae. The underlying mechanism of the anti-pneumococcal activity of this inhibitor remains unknown. Therefore, we tried to find the anti-pneumococcal mechanism of APDQ230122, one of the APDQ derivatives active against S. pneumoniae. We performed transcriptomic analysis (RNA-Seq) and proteomic analysis (LC–MS/MS analysis) to get differentially expressed genes (DEG) and differentially expressed proteins (DEP) of S. pneumoniae 521 treated with sub-inhibitory concentrations of APDQ230122 and elucidated the comprehensive expression changes of genes and proteins using multi-omics analysis. As a result, genes or proteins of peptidoglycan biosynthesis and DNA replication were significantly down-regulated. Electron microscopy analysis revealed that the structure of peptidoglycan was damaged by APDQ230122 in a chemical concentration-dependent manner. Therefore, we suggest peptidoglycan biosynthesis is a major target of APDQ230122. Multi-omics analysis can provide us useful information to elucidate anti-pneumococcal activity of APDQ230122. |
---|