Cargando…
Training confounder-free deep learning models for medical applications
The presence of confounding effects (or biases) is one of the most critical challenges in using deep learning to advance discovery in medical imaging studies. Confounders affect the relationship between input data (e.g., brain MRIs) and output variables (e.g., diagnosis). Improper modeling of those...
Autores principales: | Zhao, Qingyu, Adeli, Ehsan, Pohl, Kilian M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7691500/ https://www.ncbi.nlm.nih.gov/pubmed/33243992 http://dx.doi.org/10.1038/s41467-020-19784-9 |
Ejemplares similares
-
Deep learning identifies morphological determinants of sex differences in the pre-adolescent brain
por: Adeli, Ehsan, et al.
Publicado: (2020) -
An Explainable Geometric-Weighted Graph Attention Network for Identifying Functional Networks Associated with Gait Impairment
por: Nerrise, Favour, et al.
Publicado: (2023) -
Alcohol use effects on adolescent brain development revealed by simultaneously removing confounding factors, identifying morphometric patterns, and classifying individuals
por: Park, Sang Hyun, et al.
Publicado: (2018) -
Deep learning predicts hip fracture using confounding patient and healthcare variables
por: Badgeley, Marcus A., et al.
Publicado: (2019) -
Confound-leakage: confound removal in machine learning leads to leakage
por: Hamdan, Sami, et al.
Publicado: (2023)