Cargando…
Toward automated classification of monolayer versus few-layer nanomaterials using texture analysis and neural networks
The need for a fast and robust method to characterize nanostructure thickness is growing due to the tremendous number of experiments and their associated applications. By automatically analyzing the microscopic image texture of MoS(2) and WS(2), it was possible to distinguish monolayer from few-laye...
Autores principales: | Aleithan, Shrouq H., Mahmoud-Ghoneim, Doaa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7691502/ https://www.ncbi.nlm.nih.gov/pubmed/33244137 http://dx.doi.org/10.1038/s41598-020-77705-8 |
Ejemplares similares
-
The impact of image dynamic range on texture classification of brain white matter
por: Mahmoud-Ghoneim, Doaa, et al.
Publicado: (2008) -
Toward Exploring the Structure of Monolayer to Few-layer TaS(2) by Efficient Ultrasound-free Exfoliation
por: Hu, Yiwei, et al.
Publicado: (2018) -
Terahertz response of monolayer and few-layer WTe(2) at the nanoscale
por: Jing, Ran, et al.
Publicado: (2021) -
Stress-transfer from polymer substrates to monolayer and few-layer graphenes
por: Androulidakis, Ch., et al.
Publicado: (2019) -
Temperature Dependence of G and D’ Phonons in Monolayer to Few-Layer Graphene with Vacancies
por: Yang, Mingming, et al.
Publicado: (2020)