Cargando…
FGF15/19 is required for adipose tissue plasticity in response to thermogenic adaptations
OBJECTIVE: To determine the role of enterokine FGF15/19 in adipose tissue thermogenic adaptations. METHODS: Circulating FGF19 and gene expression (qRT-PCR) levels were assessed in subcutaneous adipose tissue from obese human patients. Effects of experimentally increased FGF15 and FGF19 levels in viv...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7691747/ https://www.ncbi.nlm.nih.gov/pubmed/33171307 http://dx.doi.org/10.1016/j.molmet.2020.101113 |
_version_ | 1783614359105175552 |
---|---|
author | Morón-Ros, Samantha Uriarte, Iker Berasain, Carmen Avila, Matías A. Sabater-Masdeu, Mònica Moreno-Navarrete, José María Fernández-Real, José Manuel Giralt, Marta Villarroya, Francesc Gavaldà-Navarro, Aleix |
author_facet | Morón-Ros, Samantha Uriarte, Iker Berasain, Carmen Avila, Matías A. Sabater-Masdeu, Mònica Moreno-Navarrete, José María Fernández-Real, José Manuel Giralt, Marta Villarroya, Francesc Gavaldà-Navarro, Aleix |
author_sort | Morón-Ros, Samantha |
collection | PubMed |
description | OBJECTIVE: To determine the role of enterokine FGF15/19 in adipose tissue thermogenic adaptations. METHODS: Circulating FGF19 and gene expression (qRT-PCR) levels were assessed in subcutaneous adipose tissue from obese human patients. Effects of experimentally increased FGF15 and FGF19 levels in vivo were determined in mice using adenoviral and adeno-associated vectors. Adipose tissues were characterized in FGF15-null mice under distinct cold-related thermogenic challenges. The analyses spanned metabolic profiling, tissue characterization, histology, gene expression, and immunoblot assays. RESULTS: In humans, FGF19 levels are directly associated with UCP1 gene expression in subcutaneous adipose tissue. Experimental increases in FGF15 or FGF19 induced white fat browning in mice as demonstrated by the appearance of multilocular beige cells and markers indicative of a beige phenotype, including increased UCP1 protein levels. Mice lacking FGF15 showed markedly impaired white adipose tissue browning and a mild reduction in parameters indicative of BAT activity in response to cold-induced environmental thermogenic challenges. This was concomitant with signs of altered systemic metabolism, such as reduced glucose tolerance and impaired cold-induced insulin sensitization. CONCLUSIONS: Enterokine FGF15/19 is a key factor required for adipose tissue plasticity in response to thermogenic adaptations. |
format | Online Article Text |
id | pubmed-7691747 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-76917472020-12-07 FGF15/19 is required for adipose tissue plasticity in response to thermogenic adaptations Morón-Ros, Samantha Uriarte, Iker Berasain, Carmen Avila, Matías A. Sabater-Masdeu, Mònica Moreno-Navarrete, José María Fernández-Real, José Manuel Giralt, Marta Villarroya, Francesc Gavaldà-Navarro, Aleix Mol Metab Original Article OBJECTIVE: To determine the role of enterokine FGF15/19 in adipose tissue thermogenic adaptations. METHODS: Circulating FGF19 and gene expression (qRT-PCR) levels were assessed in subcutaneous adipose tissue from obese human patients. Effects of experimentally increased FGF15 and FGF19 levels in vivo were determined in mice using adenoviral and adeno-associated vectors. Adipose tissues were characterized in FGF15-null mice under distinct cold-related thermogenic challenges. The analyses spanned metabolic profiling, tissue characterization, histology, gene expression, and immunoblot assays. RESULTS: In humans, FGF19 levels are directly associated with UCP1 gene expression in subcutaneous adipose tissue. Experimental increases in FGF15 or FGF19 induced white fat browning in mice as demonstrated by the appearance of multilocular beige cells and markers indicative of a beige phenotype, including increased UCP1 protein levels. Mice lacking FGF15 showed markedly impaired white adipose tissue browning and a mild reduction in parameters indicative of BAT activity in response to cold-induced environmental thermogenic challenges. This was concomitant with signs of altered systemic metabolism, such as reduced glucose tolerance and impaired cold-induced insulin sensitization. CONCLUSIONS: Enterokine FGF15/19 is a key factor required for adipose tissue plasticity in response to thermogenic adaptations. Elsevier 2020-11-07 /pmc/articles/PMC7691747/ /pubmed/33171307 http://dx.doi.org/10.1016/j.molmet.2020.101113 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Morón-Ros, Samantha Uriarte, Iker Berasain, Carmen Avila, Matías A. Sabater-Masdeu, Mònica Moreno-Navarrete, José María Fernández-Real, José Manuel Giralt, Marta Villarroya, Francesc Gavaldà-Navarro, Aleix FGF15/19 is required for adipose tissue plasticity in response to thermogenic adaptations |
title | FGF15/19 is required for adipose tissue plasticity in response to thermogenic adaptations |
title_full | FGF15/19 is required for adipose tissue plasticity in response to thermogenic adaptations |
title_fullStr | FGF15/19 is required for adipose tissue plasticity in response to thermogenic adaptations |
title_full_unstemmed | FGF15/19 is required for adipose tissue plasticity in response to thermogenic adaptations |
title_short | FGF15/19 is required for adipose tissue plasticity in response to thermogenic adaptations |
title_sort | fgf15/19 is required for adipose tissue plasticity in response to thermogenic adaptations |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7691747/ https://www.ncbi.nlm.nih.gov/pubmed/33171307 http://dx.doi.org/10.1016/j.molmet.2020.101113 |
work_keys_str_mv | AT moronrossamantha fgf1519isrequiredforadiposetissueplasticityinresponsetothermogenicadaptations AT uriarteiker fgf1519isrequiredforadiposetissueplasticityinresponsetothermogenicadaptations AT berasaincarmen fgf1519isrequiredforadiposetissueplasticityinresponsetothermogenicadaptations AT avilamatiasa fgf1519isrequiredforadiposetissueplasticityinresponsetothermogenicadaptations AT sabatermasdeumonica fgf1519isrequiredforadiposetissueplasticityinresponsetothermogenicadaptations AT morenonavarretejosemaria fgf1519isrequiredforadiposetissueplasticityinresponsetothermogenicadaptations AT fernandezrealjosemanuel fgf1519isrequiredforadiposetissueplasticityinresponsetothermogenicadaptations AT giraltmarta fgf1519isrequiredforadiposetissueplasticityinresponsetothermogenicadaptations AT villarroyafrancesc fgf1519isrequiredforadiposetissueplasticityinresponsetothermogenicadaptations AT gavaldanavarroaleix fgf1519isrequiredforadiposetissueplasticityinresponsetothermogenicadaptations |