Cargando…

Multiplane differential phase contrast imaging using asymmetric illumination in volume holographic microscopy

Significance: Differential phase contrast (DPC) is a well-known imaging technique for phase imaging. However, simultaneously acquiring multidepth DPC images is a non-trivial task. We propose simultaneous multiplane DPC imaging using volume holographic microscopy (VHM). Aim: To design and implement a...

Descripción completa

Detalles Bibliográficos
Autores principales: Chia, Yu-Hsin, Vyas, Sunil, Tsai, Jui-Chang, Huang, Yi-You, Yeh, J. Andrew, Luo, Yuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society of Photo-Optical Instrumentation Engineers 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7691765/
https://www.ncbi.nlm.nih.gov/pubmed/33247561
http://dx.doi.org/10.1117/1.JBO.25.12.123704
Descripción
Sumario:Significance: Differential phase contrast (DPC) is a well-known imaging technique for phase imaging. However, simultaneously acquiring multidepth DPC images is a non-trivial task. We propose simultaneous multiplane DPC imaging using volume holographic microscopy (VHM). Aim: To design and implement a new configuration of DPC-VHM for multiplane imaging. Approach: The angularly multiplexed volume holographic gratings (AMVHGs) and the wavelength-coded volume holographic gratings (WC-VHGs) are used for this purpose. To obtain asymmetric illumination for DPC images, a dynamic illumination system is designed by modifying the regular Köhler illumination using a thin film transistor panel (TFT-panel). Results: Multidepth DPC images of standard resolution chart and biosamples were used to compare imaging performance with the corresponding bright-field images. An average contrast enhancement of around three times is observed for target resolution chart by DPC-VHM. Imaging performance of our system is studied by modulation transfer function analysis, which suggests that DPC-VHM not only suppresses the DC component but also enhances high-frequency information. Conclusions: Proposed DPC-VHM can acquire multidepth-resolved DPC images without axial scanning. The illumination part of the system is adjustable so that the system can be adapted to bright-field mode, phase contrast mode, and DPC mode by controlling the pattern on the TFT-panel.