Cargando…

Revisiting the mechanism of hypoxic pulmonary vasoconstriction using isolated perfused/ventilated mouse lung

Hypoxic Pulmonary Vasoconstriction (HPV) is an important physiological mechanism of the lungs that matches perfusion to ventilation thus maximizing O(2) saturation of the venous blood within the lungs. This study emphasizes on principal pathways in the initiation and modulation of hypoxic pulmonary...

Descripción completa

Detalles Bibliográficos
Autores principales: Jain, Pritesh P., Hosokawa, Susumu, Xiong, Mingmei, Babicheva, Aleksandra, Zhao, Tengteng, Rodriguez, Marisela, Rahimi, Shamin, Pourhashemi, Kiana, Balistrieri, Francesca, Lai, Ning, Malhotra, Atul, Shyy, John Y.-J., Valdez-Jasso, Daniela, Thistlethwaite, Patricia A., Makino, Ayako, Yuan, Jason X.-J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7691930/
https://www.ncbi.nlm.nih.gov/pubmed/33282184
http://dx.doi.org/10.1177/2045894020956592
_version_ 1783614399788875776
author Jain, Pritesh P.
Hosokawa, Susumu
Xiong, Mingmei
Babicheva, Aleksandra
Zhao, Tengteng
Rodriguez, Marisela
Rahimi, Shamin
Pourhashemi, Kiana
Balistrieri, Francesca
Lai, Ning
Malhotra, Atul
Shyy, John Y.-J.
Valdez-Jasso, Daniela
Thistlethwaite, Patricia A.
Makino, Ayako
Yuan, Jason X.-J.
author_facet Jain, Pritesh P.
Hosokawa, Susumu
Xiong, Mingmei
Babicheva, Aleksandra
Zhao, Tengteng
Rodriguez, Marisela
Rahimi, Shamin
Pourhashemi, Kiana
Balistrieri, Francesca
Lai, Ning
Malhotra, Atul
Shyy, John Y.-J.
Valdez-Jasso, Daniela
Thistlethwaite, Patricia A.
Makino, Ayako
Yuan, Jason X.-J.
author_sort Jain, Pritesh P.
collection PubMed
description Hypoxic Pulmonary Vasoconstriction (HPV) is an important physiological mechanism of the lungs that matches perfusion to ventilation thus maximizing O(2) saturation of the venous blood within the lungs. This study emphasizes on principal pathways in the initiation and modulation of hypoxic pulmonary vasoconstriction with a primary focus on the role of Ca(2+) signaling and Ca(2+) influx pathways in hypoxic pulmonary vasoconstriction. We used an ex vivo model, isolated perfused/ventilated mouse lung to evaluate hypoxic pulmonary vasoconstriction. Alveolar hypoxia (utilizing a mini ventilator) rapidly and reversibly increased pulmonary arterial pressure due to hypoxic pulmonary vasoconstriction in the isolated perfused/ventilated lung. By applying specific inhibitors for different membrane receptors and ion channels through intrapulmonary perfusion solution in isolated lung, we were able to define the targeted receptors and channels that regulate hypoxic pulmonary vasoconstriction. We show that extracellular Ca(2+) or Ca(2+) influx through various Ca(2+)-permeable channels in the plasma membrane is required for hypoxic pulmonary vasoconstriction. Removal of extracellular Ca(2+) abolished hypoxic pulmonary vasoconstriction, while blockade of L-type voltage-dependent Ca(2+) channels (with nifedipine), non-selective cation channels (with 30 µM SKF-96365), and TRPC6/TRPV1 channels (with 1 µM SAR-7334 and 30 µM capsazepine, respectively) significantly and reversibly inhibited hypoxic pulmonary vasoconstriction. Furthermore, blockers of Ca(2+)-sensing receptors (by 30 µM NPS2143, an allosteric Ca(2+)-sensing receptors inhibitor) and Notch (by 30 µM DAPT, a γ-secretase inhibitor) also attenuated hypoxic pulmonary vasoconstriction. These data indicate that Ca(2+) influx in pulmonary arterial smooth muscle cells through voltage-dependent, receptor-operated, and store-operated Ca(2+) entry pathways all contribute to initiation of hypoxic pulmonary vasoconstriction. The extracellular Ca(2+)-mediated activation of Ca(2+)-sensing receptors and the cell–cell interaction via Notch ligands and receptors contribute to the regulation of hypoxic pulmonary vasoconstriction.
format Online
Article
Text
id pubmed-7691930
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-76919302020-12-04 Revisiting the mechanism of hypoxic pulmonary vasoconstriction using isolated perfused/ventilated mouse lung Jain, Pritesh P. Hosokawa, Susumu Xiong, Mingmei Babicheva, Aleksandra Zhao, Tengteng Rodriguez, Marisela Rahimi, Shamin Pourhashemi, Kiana Balistrieri, Francesca Lai, Ning Malhotra, Atul Shyy, John Y.-J. Valdez-Jasso, Daniela Thistlethwaite, Patricia A. Makino, Ayako Yuan, Jason X.-J. Pulm Circ Original Research Article Hypoxic Pulmonary Vasoconstriction (HPV) is an important physiological mechanism of the lungs that matches perfusion to ventilation thus maximizing O(2) saturation of the venous blood within the lungs. This study emphasizes on principal pathways in the initiation and modulation of hypoxic pulmonary vasoconstriction with a primary focus on the role of Ca(2+) signaling and Ca(2+) influx pathways in hypoxic pulmonary vasoconstriction. We used an ex vivo model, isolated perfused/ventilated mouse lung to evaluate hypoxic pulmonary vasoconstriction. Alveolar hypoxia (utilizing a mini ventilator) rapidly and reversibly increased pulmonary arterial pressure due to hypoxic pulmonary vasoconstriction in the isolated perfused/ventilated lung. By applying specific inhibitors for different membrane receptors and ion channels through intrapulmonary perfusion solution in isolated lung, we were able to define the targeted receptors and channels that regulate hypoxic pulmonary vasoconstriction. We show that extracellular Ca(2+) or Ca(2+) influx through various Ca(2+)-permeable channels in the plasma membrane is required for hypoxic pulmonary vasoconstriction. Removal of extracellular Ca(2+) abolished hypoxic pulmonary vasoconstriction, while blockade of L-type voltage-dependent Ca(2+) channels (with nifedipine), non-selective cation channels (with 30 µM SKF-96365), and TRPC6/TRPV1 channels (with 1 µM SAR-7334 and 30 µM capsazepine, respectively) significantly and reversibly inhibited hypoxic pulmonary vasoconstriction. Furthermore, blockers of Ca(2+)-sensing receptors (by 30 µM NPS2143, an allosteric Ca(2+)-sensing receptors inhibitor) and Notch (by 30 µM DAPT, a γ-secretase inhibitor) also attenuated hypoxic pulmonary vasoconstriction. These data indicate that Ca(2+) influx in pulmonary arterial smooth muscle cells through voltage-dependent, receptor-operated, and store-operated Ca(2+) entry pathways all contribute to initiation of hypoxic pulmonary vasoconstriction. The extracellular Ca(2+)-mediated activation of Ca(2+)-sensing receptors and the cell–cell interaction via Notch ligands and receptors contribute to the regulation of hypoxic pulmonary vasoconstriction. SAGE Publications 2020-11-25 /pmc/articles/PMC7691930/ /pubmed/33282184 http://dx.doi.org/10.1177/2045894020956592 Text en © The Author(s) 2020 https://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
spellingShingle Original Research Article
Jain, Pritesh P.
Hosokawa, Susumu
Xiong, Mingmei
Babicheva, Aleksandra
Zhao, Tengteng
Rodriguez, Marisela
Rahimi, Shamin
Pourhashemi, Kiana
Balistrieri, Francesca
Lai, Ning
Malhotra, Atul
Shyy, John Y.-J.
Valdez-Jasso, Daniela
Thistlethwaite, Patricia A.
Makino, Ayako
Yuan, Jason X.-J.
Revisiting the mechanism of hypoxic pulmonary vasoconstriction using isolated perfused/ventilated mouse lung
title Revisiting the mechanism of hypoxic pulmonary vasoconstriction using isolated perfused/ventilated mouse lung
title_full Revisiting the mechanism of hypoxic pulmonary vasoconstriction using isolated perfused/ventilated mouse lung
title_fullStr Revisiting the mechanism of hypoxic pulmonary vasoconstriction using isolated perfused/ventilated mouse lung
title_full_unstemmed Revisiting the mechanism of hypoxic pulmonary vasoconstriction using isolated perfused/ventilated mouse lung
title_short Revisiting the mechanism of hypoxic pulmonary vasoconstriction using isolated perfused/ventilated mouse lung
title_sort revisiting the mechanism of hypoxic pulmonary vasoconstriction using isolated perfused/ventilated mouse lung
topic Original Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7691930/
https://www.ncbi.nlm.nih.gov/pubmed/33282184
http://dx.doi.org/10.1177/2045894020956592
work_keys_str_mv AT jainpriteshp revisitingthemechanismofhypoxicpulmonaryvasoconstrictionusingisolatedperfusedventilatedmouselung
AT hosokawasusumu revisitingthemechanismofhypoxicpulmonaryvasoconstrictionusingisolatedperfusedventilatedmouselung
AT xiongmingmei revisitingthemechanismofhypoxicpulmonaryvasoconstrictionusingisolatedperfusedventilatedmouselung
AT babichevaaleksandra revisitingthemechanismofhypoxicpulmonaryvasoconstrictionusingisolatedperfusedventilatedmouselung
AT zhaotengteng revisitingthemechanismofhypoxicpulmonaryvasoconstrictionusingisolatedperfusedventilatedmouselung
AT rodriguezmarisela revisitingthemechanismofhypoxicpulmonaryvasoconstrictionusingisolatedperfusedventilatedmouselung
AT rahimishamin revisitingthemechanismofhypoxicpulmonaryvasoconstrictionusingisolatedperfusedventilatedmouselung
AT pourhashemikiana revisitingthemechanismofhypoxicpulmonaryvasoconstrictionusingisolatedperfusedventilatedmouselung
AT balistrierifrancesca revisitingthemechanismofhypoxicpulmonaryvasoconstrictionusingisolatedperfusedventilatedmouselung
AT laining revisitingthemechanismofhypoxicpulmonaryvasoconstrictionusingisolatedperfusedventilatedmouselung
AT malhotraatul revisitingthemechanismofhypoxicpulmonaryvasoconstrictionusingisolatedperfusedventilatedmouselung
AT shyyjohnyj revisitingthemechanismofhypoxicpulmonaryvasoconstrictionusingisolatedperfusedventilatedmouselung
AT valdezjassodaniela revisitingthemechanismofhypoxicpulmonaryvasoconstrictionusingisolatedperfusedventilatedmouselung
AT thistlethwaitepatriciaa revisitingthemechanismofhypoxicpulmonaryvasoconstrictionusingisolatedperfusedventilatedmouselung
AT makinoayako revisitingthemechanismofhypoxicpulmonaryvasoconstrictionusingisolatedperfusedventilatedmouselung
AT yuanjasonxj revisitingthemechanismofhypoxicpulmonaryvasoconstrictionusingisolatedperfusedventilatedmouselung