Cargando…

Optimization of Non-Uniform Deformation on Piezoelectric Circular Diaphragm Energy Harvester with a Ring-Shaped Ceramic Disk

Piezoelectric energy harvesting technology using the piezoelectric circular diaphragm (PCD) has drawn much attention because it has great application potential in replacing chemical batteries to power microelectronic devices. In this article, we have found a non-uniform strain distribution inside th...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Chaoqun, Li, Yuanbo, Yang, Tongqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7692083/
https://www.ncbi.nlm.nih.gov/pubmed/33126540
http://dx.doi.org/10.3390/mi11110963
Descripción
Sumario:Piezoelectric energy harvesting technology using the piezoelectric circular diaphragm (PCD) has drawn much attention because it has great application potential in replacing chemical batteries to power microelectronic devices. In this article, we have found a non-uniform strain distribution inside the PCD energy harvester. From the edge to the center of the ceramic disk, its output voltage first increases and then decreases. This uneven output voltage reduces the output power of the PCD energy harvester. Based on this phenomenon, we reduce the ceramic disk diameter and dig a hole in the center, analyzing the effect of removing the ceramic disk’s low output voltage part on the PCD energy harvester. The experimental results show that removing the ceramic disk’s low output voltage part can improve the output power, reduce the resonance frequency, and increase the optimal impedance of the PCD energy harvester. Under the conditions of 10 g proof mass, 9.8 m/s(2) acceleration, the PCD energy harvester with a 19-mm diameter and a 6-mm hole can reach a maximum output power of 8.34 mW.