Cargando…
A Few TH-Immunoreactive Neurons Closely Appose DMX-Located Neuronal Somata Projecting to the Stomach Prepyloric Region in the Pig
SIMPLE SUMMARY: Although organization of the catecholaminergic system, in the porcine vagal motor nuclei of the pig, as well as distribution and chemical nature of the parasympathetic preganglionic neurons innervating the prepyloric region of the porcine stomach in the nucleus, have been well establ...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7692240/ https://www.ncbi.nlm.nih.gov/pubmed/33142920 http://dx.doi.org/10.3390/ani10112008 |
Sumario: | SIMPLE SUMMARY: Although organization of the catecholaminergic system, in the porcine vagal motor nuclei of the pig, as well as distribution and chemical nature of the parasympathetic preganglionic neurons innervating the prepyloric region of the porcine stomach in the nucleus, have been well established, the question of a possible direct regulatory interaction between both neuronal systems still remains unknown. We discovered morphological foundations for direct regulatory action of the local TH-immunoreactive neurons on vagal preganglionic parasympathetic efferent neurons supplying the prepyloric region of the porcine stomach. ABSTRACT: The vagus nerve is responsible for efferent innervation and functional control of stomach functions. The efferent fibers originate from neurons located in the dorsal motor nucleus of the vagus (DMX) and undergo functional control of the local neuroregulatory terminals. The aim of the present study was to examine the existence of morphological foundations for direct regulatory action of the local TH-immunoreactive neurons on parasympathetic efferent neurons supplying the prepyloric region of the porcine stomach. Combined injection of neuronal retrograde tracer Fast Blue into the stomach prepyloric region with TH immunostaining was used in order to visualize spatial relationship between DMX-located stomach prepyloric region supplying neuronal stomata and local TH-IR terminals. We confirmed existence of TH-immunoreactive neural terminals closely opposing the stomach prepyloric region innervating neurons at the porcine DMX area. The observed spatial relationship points out the possibility of indirect catecholaminergic control of the stomach function exerted through preganglionic parasympathetic efferent neurons in the pig. |
---|