Cargando…
Automatic Gene Function Prediction in the 2020’s
The current rate at which new DNA and protein sequences are being generated is too fast to experimentally discover the functions of those sequences, emphasizing the need for accurate Automatic Function Prediction (AFP) methods. AFP has been an active and growing research field for decades and has ma...
Autores principales: | Makrodimitris, Stavros, van Ham, Roeland C. H. J., Reinders, Marcel J. T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7692357/ https://www.ncbi.nlm.nih.gov/pubmed/33120976 http://dx.doi.org/10.3390/genes11111264 |
Ejemplares similares
-
Metric learning on expression data for gene function prediction
por: Makrodimitris, Stavros, et al.
Publicado: (2020) -
A thorough analysis of the contribution of experimental, derived and sequence-based predicted protein-protein interactions for functional annotation of proteins
por: Makrodimitris, Stavros, et al.
Publicado: (2020) -
Improving protein function prediction using protein sequence and GO-term similarities
por: Makrodimitris, Stavros, et al.
Publicado: (2019) -
Unsupervised protein embeddings outperform hand-crafted sequence and structure features at predicting molecular function
por: Villegas-Morcillo, Amelia, et al.
Publicado: (2020) -
The Power of Universal Contextualized Protein Embeddings in
Cross-species Protein Function Prediction
por: van den Bent, Irene, et al.
Publicado: (2021)