Cargando…
Revealing Prognosis-Related Pathways at the Individual Level by a Comprehensive Analysis of Different Cancer Transcription Data
Identifying perturbed pathways at an individual level is important to discover the causes of cancer and develop individualized custom therapeutic strategies. Though prognostic gene lists have had success in prognosis prediction, using single genes that are related to the relevant system or specific...
Autores principales: | Fang, Jingya, Pian, Cong, Xu, Mingmin, Kong, Lingpeng, Li, Zutan, Ji, Jinwen, Zhang, Liangyun, Chen, Yuanyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7692404/ https://www.ncbi.nlm.nih.gov/pubmed/33138076 http://dx.doi.org/10.3390/genes11111281 |
Ejemplares similares
-
EpiMOGA: An Epistasis Detection Method Based on a Multi-Objective Genetic Algorithm
por: Chen, Yuanyuan, et al.
Publicado: (2021) -
Mining influential genes based on deep learning
por: Kong, Lingpeng, et al.
Publicado: (2021) -
SPMLMI: predicting lncRNA–miRNA interactions in humans using a structural perturbation method
por: Xu, Mingmin, et al.
Publicado: (2021) -
Identification and Functional Analysis of Individual-Specific Subpathways in Lung Adenocarcinoma
por: Fang, Jingya, et al.
Publicado: (2022) -
Deep6mA: A deep learning framework for exploring similar patterns in DNA N6-methyladenine sites across different species
por: Li, Zutan, et al.
Publicado: (2021)