Cargando…
Predicting clinical resistance prevalence using sewage metagenomic data
Antibiotic resistance surveillance through regional and up-to-date testing of clinical isolates is a foundation for implementing effective empirical treatment. Surveillance data also provides an overview of geographical and temporal changes that are invaluable for guiding interventions. Still, due t...
Autores principales: | Karkman, Antti, Berglund, Fanny, Flach, Carl-Fredrik, Kristiansson, Erik, Larsson, D. G. Joakim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7692497/ https://www.ncbi.nlm.nih.gov/pubmed/33244050 http://dx.doi.org/10.1038/s42003-020-01439-6 |
Ejemplares similares
-
Computational discovery and functional validation of novel fluoroquinolone resistance genes in public metagenomic data sets
por: Boulund, Fredrik, et al.
Publicado: (2017) -
Identification of 76 novel B1 metallo-β-lactamases through large-scale screening of genomic and metagenomic data
por: Berglund, Fanny, et al.
Publicado: (2017) -
Sewage surveillance of antibiotic resistance holds both opportunities and challenges
por: Larsson, D. G. Joakim, et al.
Publicado: (2022) -
Identification and reconstruction of novel antibiotic resistance genes from metagenomes
por: Berglund, Fanny, et al.
Publicado: (2019) -
Functional verification of computationally predicted qnr genes
por: Flach, Carl-Fredrik, et al.
Publicado: (2013)