Cargando…

Identification of Feldin, an Antifungal Polyyne from the Beefsteak Fungus Fistulina hepatica

Fruiting body-forming members of the Basidiomycota maintain their ecological fitness against various antagonists like ascomycetous mycoparasites. To achieve that, they produce myriads of bioactive compounds, some of which are now being used as agrochemicals or pharmaceutical lead structures. Here, w...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Jungho, Shi, Yi-Ming, Grün, Peter, Gube, Matthias, Feldbrügge, Michael, Bode, Helge, Hennicke, Florian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7692509/
https://www.ncbi.nlm.nih.gov/pubmed/33142735
http://dx.doi.org/10.3390/biom10111502
Descripción
Sumario:Fruiting body-forming members of the Basidiomycota maintain their ecological fitness against various antagonists like ascomycetous mycoparasites. To achieve that, they produce myriads of bioactive compounds, some of which are now being used as agrochemicals or pharmaceutical lead structures. Here, we screened ethyl acetate crude extracts from cultures of thirty-five mushroom species for antifungal bioactivity, for their effect on the ascomycete Saccharomyces cerevisiae and the basidiomycete Ustilago maydis. One extract that inhibited the growth of S. cerevisiae much stronger than that of U. maydis was further analyzed. For bioactive compound identification, we performed bioactivity-guided HPLC/MS fractionation. Fractions showing inhibition against S. cerevisiae but reduced activity against U. maydis were further analyzed. NMR-based structure elucidation from one such fraction revealed the polyyne we named feldin, which displays prominent antifungal bioactivity. Future studies with additional mushroom-derived eukaryotic toxic compounds or antifungals will show whether U. maydis could be used as a suitable host to shortcut an otherwise laborious production of such mushroom compounds, as could recently be shown for heterologous sesquiterpene production in U. maydis.