Cargando…
Fast Deoxynivalenol Determination in Cereals Using a White Light Reflectance Spectroscopy Immunosensor
Deoxynivalenol (DON) is a mycotoxin produced by certain Fusarium species and found in a high percentage of wheat and maize grains cultured worldwide. Although not so toxic as other mycotoxins, it exhibits both chronic and acute toxicity, and therefore methods for its fast and accurate on-site determ...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7692517/ https://www.ncbi.nlm.nih.gov/pubmed/33113758 http://dx.doi.org/10.3390/bios10110154 |
Sumario: | Deoxynivalenol (DON) is a mycotoxin produced by certain Fusarium species and found in a high percentage of wheat and maize grains cultured worldwide. Although not so toxic as other mycotoxins, it exhibits both chronic and acute toxicity, and therefore methods for its fast and accurate on-site determination are highly desirable. In the current work, we employ an optical immunosensor based on White Light Reflectance Spectroscopy (WLRS) for the fast and sensitive immunochemical label-free determination of DON in wheat and maize samples. The assay is completed in 12 min and has a quantification limit of 2.5 ng/mL in buffer corresponding to 125 μg/kg in whole grain which is lower than the maximum allowable concentrations set by the regulatory authorities for grains intended for human consumption. Several extraction protocols have been compared, and the highest recovery (>90%) was achieved employing distilled water. In addition, identical calibration curves were received in buffer and wheat/maize extraction matrix providing the ability to analyze the grain samples using calibrators in buffer. Recoveries of DON from spiked wheat and maize grain samples ranged from 92.0(±4.0) to 105(±4.0)%. The analytical performance of the WLRS immunosensor, combined with the short analysis time and instrument portability, supports its potential for on-site determinations. |
---|